Answer:
The answer is 4.
Step-by-step explanation:
2(1 - 3y) - 13x
2(1−(3)(−9))−(13)(4)
56-52
=4
Answer:
<em>It has infinitely as many solutions</em>
Step-by-step explanation:
Equations and Identities
When dealing with equations, we must find values of the variable who mak the expression become an identity.
The expression is an identity regardless on what the value of x is, so we can say the equation has infinite as many solutions. For example x=0 will make the expression look like 3=3 which is an identity. If x=8, we'll obtain 27=27 and so on
Answer:
The Taylor series of f(x) around the point a, can be written as:

Here we have:
f(x) = 4*cos(x)
a = 7*pi
then, let's calculate each part:
f(a) = 4*cos(7*pi) = -4
df/dx = -4*sin(x)
(df/dx)(a) = -4*sin(7*pi) = 0
(d^2f)/(dx^2) = -4*cos(x)
(d^2f)/(dx^2)(a) = -4*cos(7*pi) = 4
Here we already can see two things:
the odd derivatives will have a sin(x) function that is zero when evaluated in x = 7*pi, and we also can see that the sign will alternate between consecutive terms.
so we only will work with the even powers of the series:
f(x) = -4 + (1/2!)*4*(x - 7*pi)^2 - (1/4!)*4*(x - 7*pi)^4 + ....
So we can write it as:
f(x) = ∑fₙ
Such that the n-th term can written as:

Yeah also you got it correct, congrats.