Answer:
The water temperature that produces the maximum number of salmon swimming upstream is approximately 12.305 degrees Celsius.
Step-by-step explanation:
Let
, for
.
represents the temperature of the water, measured in degrees Celsius, and
is the number of salmon swimming upstream to spawn, dimensionless.
We compute the first and second derivatives of the function:
(Eq. 1)
(Eq. 2)
Then we equalize (Eq. 1) to zero and solve for
:

And all roots are found by Quadratic Formula:
, 
Only the first root is inside the given interval of the function. Hence, the correct answer is:

Now we evaluate the second derivative at given result. That is:


According to the Second Derivative Test, a negative value means that critical value leads to a maximum. In consequence, the water temperature that produces the maximum number of salmon swimming upstream is approximately 12.305 degrees Celsius.
Negative 73
drop of 73
minus 73
below 73
taking away 73
Answer:

Step-by-step explanation:
Given


Required
The probability model
To do this, we simply calculate the probability of each container.
So, we have:





So, the probability model is:

Answer:
2.87%
Step-by-step explanation:
We have the following information:
mean (m) = 200
standard deviation (sd) = 50
sample size = n = 40
the probability that their mean is above 21.5 is determined as follows:
P (x> 21.5) = P [(x - m) / (sd / n ^ (1/2))> (21.5 - 200) / (50/40 ^ (1/2))]
P (x> 21.5) = P (z> -22.57)
this value is very strange, therefore I suggest that it is not 21.5 but 215, therefore it would be:
P (x> 215) = P [(x - m) / (sd / n ^ (1/2))> (215 - 200) / (50/40 ^ (1/2))]
P (x> 215) = P (z> 1.897)
P (x> 215) = 1 - P (z <1.897)
We look for this value in the attached table of z and we have to:
P (x> 215) = 1 - 0.9713 (attached table)
P (x> 215) =.0287
Therefore the probability is approximately 2.87%