Answer:
The length of AC is 126 units.
Step-by-step explanation:
Given information: ED=9 units, AB=81 units, EC=x and AC=140-x.
In triangle ABC and EDC,
(Given)
(Given)
By AA property of similarity,
![\triangle ABC\sim \angle EDC](https://tex.z-dn.net/?f=%5Ctriangle%20ABC%5Csim%20%5Cangle%20EDC)
Both triangles ABC and EDC are similar. The corresponding sides of two similar triangles are proportional.
![\frac{AB}{ED}=\frac{AC}{EC}](https://tex.z-dn.net/?f=%5Cfrac%7BAB%7D%7BED%7D%3D%5Cfrac%7BAC%7D%7BEC%7D)
![\frac{81}{9}=\frac{140-x}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B81%7D%7B9%7D%3D%5Cfrac%7B140-x%7D%7Bx%7D)
![9=\frac{140-x}{x}](https://tex.z-dn.net/?f=9%3D%5Cfrac%7B140-x%7D%7Bx%7D)
![9x=140-x](https://tex.z-dn.net/?f=9x%3D140-x)
![9x+x=140](https://tex.z-dn.net/?f=9x%2Bx%3D140)
![10x=140](https://tex.z-dn.net/?f=10x%3D140)
Divide both sides by 10.
![x=14](https://tex.z-dn.net/?f=x%3D14)
The value of x is 14. So, the length of AC is
![AC=140-14=126](https://tex.z-dn.net/?f=AC%3D140-14%3D126)
Therefore the length of AC is 126 units.