If a2 -2ab + b2 = 9 and a![\begin{gathered} a^2-2ab+b^2=9 \\ aStep 1 factorize[tex]\begin{gathered} a^2-2ab+b^2=(a-b)^2 \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D9%20%5C%5C%20a%3C%2Fp%3E%3Cp%3E%EF%BB%BFStep%201%20%3C%2Fp%3E%3Cp%3Efactorize%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20a%5E2-2ab%2Bb%5E2%3D%28a-b%29%5E2%20%5C%5C%20%20%5Cend%7Bgathered%7D)
then
[tex]\begin{gathered} (a-b)^2=9 \\ \sqrt{(a-b)^2}=\sqrt{9} \\ a-b=\pm3 \\ \\ aa-b=-3
Answer:24
Step-by-step explanation:Enlarges=multiply ,so multiply 8 and 3
B because it’s a random sample and it’s not biased
Answer:
x^2-6x+5
Step-by-step explanation:
To have roots at x=5 and x=1 you need to write is as follows
(x-5)(x-1)
you then need to multiply these two and get
x^2-6x+5
√2 is irrational
a rational number Q can be expressed in the form
where a and b are integers.
- 18 =
⇒ rational
⇒ rational
3.14 =
⇒ rational
√2 = 1.414213562...... ⇒ irrational