Answer:
4
Step-by-step explanation:
To find the degree of a polynomial, identify the term with the greatest exponent. The exponent of that term is the degree of the polynomial.
In the given polynomial 5x⁴+4x²+2x+1, the term with the greatest exponent is 5x⁴. This term has an exponent of 4, so therefore, the degree of the polynomial is 4.
I hope this helps!
Observe the sequences below. I. 3, 6, 9, 12, ... II. 3, 9, 27, 81, III. 2, 4, 8, 16, ... IV. 3, 5, 7, 9, Which of these are geom
Sholpan [36]
Observe the sequences below. I. 3, 6, 9, 12, ... II. 3, 9, 27, 81, III. 2, 4, 8, 16, ... IV. 3, 5, 7, 9, Which of these are geometric sequences? III only O Il and me II and IV O I and
Answer:
The answer is option 2.
Step-by-step explanation:
Given that the TU and UF added up together to form a length of 32. In order to find TU, you have to subtract length of UF from 32 :
TU + UF = 32
TU + 20 = 32
TU = 32 - 20
TU = 12
Answer:
- <u><em>A dilation by a scale factor of 4 and then a reflection across the x-axis </em></u>
Explanation:
<u>1. Vertices of triangle FGH:</u>
- F: (-2,1)
- G: (-3,3)
- H: (0,1)
<u>2. Vertices of triangle F'G'H':</u>
- F': (-8,-4)
- G': (-12,-12)
- H': (0, -4)
<u>3. Solution:</u>
Look at the coordinates of the point H and H': to transform (0,1) to (0,-4) you can muliply each coordinate by 4 and then change the y-coordinate from 4 to -4. That is<em> a dilation by a scale factor of 4 and a reflection across the x-axis.</em> This is the proof:
- Rule for a dilation by a scale factor of 4: (x,y) → 4(x,y)
(0,1) → 4(0,1) = (0,4)
- Rule for a reflection across the x-axis:{ (x,y) → (x, -y)
(0,4) → (0,-4)
Verfiy the transformations of the other vertices with the same rule:
- Dilation by a scale factor of 4: multiply each coordinate by 4
4(-2,1) → (-8,4)
4(-3,3) → (-12,12)
- Relfection across the x-axis: keep the x-coordinate and negate the y-coordinate
(-8,4) → (-8,-4) ⇒ F'
(-12,12) → (-12,-12) ⇒ G'
Therefore, the three points follow the rules for <em>a dilation by a scale factor of 4 and then a reflection across the x-axis.</em>
Kevin can cut 2 14-inch long pieces with 2/3 of a foot left.