First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>
Answer:
D. Rewrite one side (or both) using the distributive property, Yes
Step-by-step explanation:
How can we get Equation BBB from Equation AAA? Based on the previous answer, are the equations equivalent? In other words, do they have the same solution?
Answer:
Step-by-step explanation:
A. The figure is a triangular pyramid. You can findits surface area by adding up the area of the three faces of the triangle and the area of the base. A derived formula also is used where the SA is equal to 12 times the perimeter of base times the slant height, added to that is the area of the base. The area of the square base is s^2. Its perimeter is 4s.
SA of Pyramid = 12*P*l + s^2
SA of Pyramid = 12*4s*l + 16^2
SA of Pyramid = 12*4(16)*(17) + (16)^2
SA of Pyramid = 11,008 square inches
b.) The formula for the SA of a cone is:
SA of cone = πr[r+√(h^2+r^2)]
SA of cone = π(3)[(3+√(8^2+3^2)]
SA of cone = 108.8 square inches