Here is the answer the app is called cymath btw
----------------------------------------------------------------------------------------
Formula
----------------------------------------------------------------------------------------
Area of rectangle = Length x Width
----------------------------------------------------------------------------------------
Find Length
----------------------------------------------------------------------------------------
357 = Length x 17
----------------------------------------------------------------------------------------
Divide by 17 through
----------------------------------------------------------------------------------------
Length = 357 ÷ 7
Length = 51 inches
----------------------------------------------------------------------------------------
Answer: The length of the rectangle is 51 inches
----------------------------------------------------------------------------------------
Answer:
43/4 = 10.25 which rounds to the nearest whole number of 10 total carts
(A)
1,4
1,3
1,2
1,1
2,1
2,2
2,3
2,4
3,1
3,2
3,3
3,4
4,1
4,2
4,3
4,4
5,1
5,2
5,3
5,4
6,4
6,3
6,2
6,1
(B)
3%
(C)
I'm not sure about the answer for C, Sorry. Hope this helps!
Answer:

Step-by-step explanation:
Given: 
Initial value: y(1)=6
Let 

Variable separable

Integrate both sides


Initial condition, y(1)=6


Put C into equation
Solution:

or



Hence, The solution is
or 