Answer: A) .1587
Step-by-step explanation:
Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.
i.e.
and 
Let x denotes the amount of soda in any can.
Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.
Then, the probability that a randomly selected can will need to go through the mentioned process = probability that a randomly selected can has more than 12.50 ounces of soda poured into it =
![P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587](https://tex.z-dn.net/?f=P%28x%3E12.50%29%3D1-P%28x%5Cleq12.50%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B12.50-12.30%7D%7B0.20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1%29%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.8413%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%5C%5C%5C%3D0.1587)
Hence, the required probability= A) 0.1587
Answer:
9.3 centimeters
Step-by-step explanation:
If the length of the third side of the triangle is c, then according to the Law of Cosines, c2 = 72 + 132 – 2(7)(13)(cos 44°). The value of c2 can be simplified to approximately 49 + 169 – 130.9198, or 87.0802, using a calculator. By taking the square root of 87.0802, the length of the third side of the triangle comes out to be approximately 9.3 centimeters.
Step-by-step explanation:
hear is answer in attachment
Answer:
Approximately
(
.) (Assume that the choices of the
passengers are independent. Also assume that the probability that a passenger chooses a particular floor is the same for all
floors.)
Step-by-step explanation:
If there is no requirement that no two passengers exit at the same floor, each of these
passenger could choose from any one of the
floors. There would be a total of
unique ways for these
passengers to exit the elevator.
Assume that no two passengers are allowed to exit at the same floor.
The first passenger could choose from any of the
floors.
However, the second passenger would not be able to choose the same floor as the first passenger. Thus, the second passenger would have to choose from only
floors.
Likewise, the third passenger would have to choose from only
floors.
Thus, under the requirement that no two passenger could exit at the same floor, there would be only
unique ways for these two passengers to exit the elevator.
By the assumption that the choices of the passengers are independent and uniform across the
floors. Each of these
combinations would be equally likely.
Thus, the probability that the chosen combination satisfies the requirements (no two passengers exit at the same floor) would be:
.
It would be 41.5 divided by 5 because a pentagon has 5 sides