Answer:
they are the place where cell respiration takes place
Explanation:
Cellular respiration is a series of metabolic reactions used by the cell to create energy (ATP), these reactions occur partially in the cytoplasm, but mostly in the mitochondria. On the other hand, vacuoles store water in plants and help give them structure, are the largest organelle in plant cells, and both plants and animals have them. Therefore the answer is, they are the place where cell respiration takes place.
Answer:
An electrogenic effect
Explanation:
An electrogenic transport is a process where there is a translocation of net charge across the membrane. E.g of electrogenic channels are Na+, K+, Ca2+, and Cl− channels.
Answer:
Hmm.
Explanation:
The ocean is the dominant physical feature on our planet Earth, covering approximately 70% of the planet's surface.
Answer:
D) In case 1, both PS I and PS II completely lose function; in case 2, a proton gradient is still produced.
Explanation:
The light dependent reaction of photosynthesis, which produces the ATP and NADPH needed in the light independent stage of the process, includes complexes of proteins and pigments called PHOTOSYSTEMS. These photosystems (I and II) are key to the functionality of the light dependent reactions in the thylakoid.
The major pigment present in both photosystems is CHLOROPHYLL A, which absorbs light energy and transfers electrons to the reaction center. Chlorophyll B is only an accessory pigment meaning it can be done without. Hence, if all of the chlorophyll A is inactivated in the algae but leaves chlorophyll B intact as in case 1, both PS I and PS II will lose their function because Chlorophyll A is the major pigment that absorbs light energy in both photosystems.
In case 2, if PS I is inhibited and PS II is unaffected, a PROTON GRADIENT WILL STILL BE PRODUCED because the splitting of water into protons (H+) and electrons (e-) occurs in PSII. Hence, H+ ions can still be pumped into the inner membrane of the thylakoid in order to build a proton gradient even without the occurrence of PS I.