Answer:
Charge= -2.
Gains two electron into the 4p^4 to become 4p^6.
Explanation:
The element in the periodic table/chart that matches with the valence electron configuration is Selenium with full electron configuration of [Ar] 3d^10 4s^2 4P^4 which is a non-metal that is found in group 4 of the periodic table/chart.
Selenium can receive 2 more electrons on the 4p^4 to give a -2(minus 2) ion that is Se^2-.
Selenium can also loose 2 electron from 4s^2 to give a +2 ion that is Se^2+.
Selenium can also loose 2 electrons from 4s^2 and 2 electrons from 4p^4 to form Se^4+.
Selenium can also loose 2 electrons from 4s^2 and 4 electrons from 4p^4 to form Se^6+.
Thus, in order to form a monatomic ion with a charge(we will be making use of the most stable one). Thus, it will gain two more electron since this is easier to become 4s^2 4p^6.
Answer:
K = 3.37
Explanation:
2 NH₃(g) → N₂(g) + 3H₂(g)
Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).
2 NH₃(g) → N₂(g) + 3H₂(g)
Initally 4moles - -
React 2moles 2m + 3m
Eq 2 moles 2m 3m
We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)
The expression for K is: ( [H₂]³ . [N₂] ) / [NH₃]²
We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)
K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²
K = 27/8 / 1 → 3.37
Answer: 0.082 atm L k^-1 mole^-1
Explanation:
Given that:
Volume of gas (V) = 62.0 L
Temperature of gas (T) = 100°C
Convert 100°C to Kelvin by adding 273
(100°C + 273 = 373K)
Pressure of gas (P) = 250 kPa
[Convert pressure in kilopascal to atmospheres
101.325 kPa = 1 atm
250 kPa = 250/101.325 = 2.467 atm]
Number of moles (n) = 5.00 moles
Gas constant (R) = ?
To get the gas constant, apply the formula for ideal gas equation
pV = nRT
2.467 atm x 62.0L = 5.00 moles x R x 373K
152.954 atm•L = 1865 K•mole x R
To get the value of R, divide both sides by 1865 K•mole
152.954 atm•L / 1865 K•mole = 1865 K•mole•R / 1865 K•mole
0.082 atm•L•K^-1•mole^-1 = R
Thus, the value of gas constant is 0.082 atm L k^-1 mole^-1
<span>The ability of an atom to attract the shared electrons in a covalent bond is its:</span>electronegativity.
Gallium Selenide is the non chemical name for Ga2Se3