Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

All solutions are mixtures of two or more substances, but unless the mixture has a homogeneous distribution of solutes in the solvent, then the mixture is not a solution. Therefore, all mixtures are not solutions.
Look at the periodic table to find the charge on atoms.
Magnesium is +2 and Nitrogen is -3. Since there are two nitrogen charge 2*-3 = -6 there needs to be 3 Mg then (3*2+ = 6+) to pair with the two nitrogen.
3 Mg(+2) + 2 N(-3) = Mg3N2
Answer:
The law is observed in the given equation.
Explanation:
CaCO₃ + 2HCI → CaCI₂ +H₂O + CO₂
In order to find out if the law of conservative mass is followed, we need to <u>count how many atoms of each element are there in both sides of the equation</u>:
- Ca ⇒ 1 on the left, 1 on the right.
- C ⇒ 1 on the left, 1 on the right.
- O ⇒ 3 on the left, 3 on the right.
- H ⇒ 2 on the left, 2 on the right.
- Cl ⇒ 2 on the left, 2 on the right.
As the numbers for all elements involved are the same, the law is observed in the given equation.