1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
6

7n+12=1/2(14n+24) NEED ANSWER ASAP

Mathematics
1 answer:
Angelina_Jolie [31]3 years ago
3 0

Answer:

n = all real numbers

Step-by-step explanation:

7n+12=1/2(14n+24)

multiply each side by 2

2(7n+12)=2*1/2(14n+24)

distribute

14n+24 = 14n + 24

subtract 14n from each side

14n-14n+24 = 14n-14n + 24

24=24

this is always true

n = all real numbers

You might be interested in
An animal shelter spends $4.50 per day to care for each bird and $8.50 per day to care for each cat. Dominic noticed that the sh
Nimfa-mama [501]

Answer:

Step-by-step explanation:

4.5b + 8.5c = 175

b + c = 22.......b = 22 - c

4.5(22 - c) + 8.5c = 175

99 - 4.5c + 8.5c = 175

-4.5c + 8.5c = 175 - 99

4c = 76

c = 76/4

c = 19......there are 19 cats

b + c = 22

b + 19 = 22

b = 22 - 19

b = 3 <==== there are 3 birds

3 0
3 years ago
The life of light bulbs is distributed normally. the standard deviation of the lifetime is 25 hours and the mean lifetime of a b
Dominik [7]
The probability is 0.8997.

We will use a z-score to answer this question.  z-scores are given by the formula
z=\frac{X-\mu}{\sigma}

With our information, we have
z=\frac{622-590}{25}=\frac{32}{25}=1.28

Looking this up in a z-table (http://www.z-table.com) we see that the area to the left of this (everything less than, up to this value) is 0.8997.
4 0
3 years ago
Solving Exponential Equations (lacking a common base)<br><br>(0.52)^q=4
bulgar [2K]

Answer:

q = log4 / log0.53

q = -2.189

Step-by-step explanation:

(0.53)^q = 4

Taking log of both sides!

q log 0.53 = log 4

q = log 4 / log 0.53

q = 0.602 / -0.275

q = - 2.189

This can be checked to confirm correctness.

Substituting q = -2.189

(0.53)^ -2.189 = 1/ 0.249

= 4.01 Proved!

(Note that the "1" is because of the negative sign)

8 0
3 years ago
Read 2 more answers
(x+2/x-7) - (x^2+4x+13/x^2-4x-21)
olya-2409 [2.1K]

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

7 0
3 years ago
Read 2 more answers
light travels at 3x10 to the power of 8 meters per second. there are 8.64x10 to the power of 4 seconds in 24 hours. how many met
Vaselesa [24]
Distance = velocity * time

               = 3 * 10^8 * 8.64 * 10^4 

               =   2.592 * 10^13 meters (answer)
6 0
3 years ago
Other questions:
  • 2, 9, 16, 23, Number pattern expression equations
    14·2 answers
  • Trimble Graphic Design receives $2,250 from a client billed in a previous month for services provided. Which of the following ge
    6·1 answer
  • 6. Sue has 18 homework problems. She has 3 times as many problems as John. Which equation shows how many problems John has (j)?
    5·2 answers
  • The price of a shirt is marked down from $12.50 to $10,00. What is the percent decrease of the shirt?
    5·1 answer
  • Preimage and image points are labeled as primes.
    11·1 answer
  • Write an equation that could be used to find the measure of angle A
    6·1 answer
  • Identify a pair of supplementary angles in the figure. answers : 2 and 4 1 and 6 1 and 5 5 and 6
    8·1 answer
  • The function of f (x) is defined by f (x)=4x+7. the inverse of f (x) is g (x). what is g (15)?
    15·1 answer
  • Ok so I know what 2 X 8 is but I have no idea how to put the answer into the system I keep trying but it’s not working
    5·1 answer
  • The means and mean absolute deviations of the individual times of members on two 4 times 400 meter relay track teams are shown i
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!