Exponential model is y=Ae^(kt)
Assume initial start is 2005, time = 0, so y = 18000e^(kt)
45000 = 18000*e^(k5)
solve for k, approx 0.1832
y = 18000*e^(1.832) = 112,435, approximately
Answer:

Explanation:
The
th term of an arithmetic sequence is explicitly defined as
where
is the first term of the sequence and
is the the common difference.
From the given first five terms of the sequence we can see that the first term is
so
.
The common difference,
, can be calculated by
so we'll find the common difference of the given sequence by letting 
.
Now let's plug everything we know.



Answer:
is there a visual version of this question?
<em><u>your </u></em><em><u>question</u></em><em><u>:</u></em><em><u> </u></em>
<em>True or false: z=−5 is a solution to the inequality −2|z−3|<−20.</em>
<em><u>answer:</u></em><em><u> </u></em>
<em>-</em><em>2</em><em>|</em><em>z-3|</em><em><</em><em>-</em><em>2</em><em>0</em>
<em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em><em>. </em><em> </em><em> </em><em>-</em><em>-</em><em>-</em><em>-</em><em>-</em>
<em> </em><em> </em><em> </em><em>-</em><em>2</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>|</em><em>z-3|</em><em><</em><em>1</em><em>0</em><em> </em>
<em>equation </em><em>1</em><em>:</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>equation </em><em>2</em><em>:</em><em> </em>
<em>z-3<</em><em>1</em><em>0</em><em>. </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>z-3></em><em>-</em><em>1</em><em>0</em><em> </em>
z<13 z>-13
<em>So </em><em>false, </em><em>z=</em><em>-</em><em>5</em><em> </em><em>is </em><em>not </em><em>a </em><em>solution </em><em>to the </em><em>inequality</em><em>.</em>
<em>hope </em><em>this </em><em>helps, </em><em>have </em><em>a </em><em>great </em><em>day! </em><em>:</em><em>)</em>