Answer:
the speed of the command module relative to Earth just after the separation = 4943.2 Km/hr
Explanation:
Given:
speed of space vehicle =5000 km/hr
rocket motor speed = 71 km/hr relative to the command module
mass of module = m
mass of motor = 4m
By conservation of linear momentum
Pi = Pf
Pi= initial momentum
Pf= final momentum
Since, the motion is only in single direction

Where M is the mass of the space vehicle which equals the sum of motor's mass and the command's mass, Vi its initial velocity, V_mE is velocity of motor relative to Earth, and V_cE is its velocity of the command relative to Earth.
The velocity of motor relative to Earth equals the velocity of motor relative to command plus the velocity of command relative to Earth.
V_mE = V_mc+V_cE
Where V_mc is the velocity of motor relative to command this yields


substituting the values we get


= 4943.2 Km/hr
the speed of the command module relative to Earth just after the separation = 4943.2 Km/hr
C. you need to double your speed.
since there is gravity and the more mass the more gravity pulls it to the core of the earth; cars are heavy.
Answer:

Explanation:
The index of refraction is equal to the speed of light c in vacuum divided by its speed v in a substance, or
. For our case we want to use
, which for our values is equal to:

Which we will express with 3 significant figures (since a product or quotient must contain the same number of significant figures as the measurement with the <em>least</em> number of significant figures):

Answer:
925.04 J/s
Explanation:
T = 80 C = 80 + 273 = 353 K
To = 20 c = 20 + 273 = 293 K
A = 2 m^2
Use the formula for Stefan's law
Energy radiated per second


E = 925.04 J/s
By copying their genomes, they retain the tool kit and at the same time generate a garage full of spare parts. Gene duplication can provide the raw material for expression changes to occur, and polyploidy itself can trigger epigenetic changes