hi i just need some points rq tyStep-by-step explanation:
Hi there!
The general formula of A line in slope-intercept form is the following:

In this formula m represents the slope of the line. Therefore, we can conclude that m = 2/5.

We also know that the line passes through the point (-3, -1) and we can therefore substitute this coordinate into the formula of the line.
x = -3 and y = -1

Multiply first.

And finally add 1 1/5 to both sides of the equation.

We can now switch sides.

Now we've found our value of n, which we can substitute into the formula of our line. Hence, in slope-intercept form, we find the following:
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em><em><u>uh</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>