Answer:
given n(A) = 14
n(B) = 15
n(A∩B ) = 15
Step-by-step explanation:
now we know that ,n(AUB) = n(A)+n(B)-n(A∩B)
n(AUB) = 14+15-6 = 23.Answer
Answer:
meters must be converted into millimeters.
Step-by-step explanation:
Answer:
I cannot not give the correct solution, need more context. How many children are there, how many adults are in the family? So I will explain in my explanation.
Step-by-step explanation:
If more context were given, for example:<em> 2 adults and 2 children.</em>
Then the bakers would have bought 2 adult tickets for ___ each
Then the bakers would have bought 3 children's tickets for ___ each
So using what we know we can create an equation:
<em>2A+3C=28</em>,<em> </em>
meaning 2 adult tickets plus 3 children's tickets costs a total of $28.
So we divide 28 by 5, which is the total amount of tickets.
28/5=5.6
So to figure the cost of children's tickets multiply the cost by amount.
3*$5.6=$16.8, C=16.8
To figure out the cost of the adults tickets multiple the cost by the amount.
2*$5.6=$11.2, A=11.2
a) the bakers would have bought <u>2</u> adult tickets for <u>5.6</u> each.
b) the bakers would have bought <u>3</u> children's tickets for <u>5.6</u> each.
Answer:
- vertex (3, -1)
- y-intercept: (0, 8)
- x-intercepts: (2, 0), (4, 0)
Step-by-step explanation:
You are being asked to read the coordinates of several points from the graph. Each set of coordinates is an (x, y) pair, where the first coordinate is the horizontal distance to the right of the y-axis, and the second coordinate is the vertical distance above the x-axis. The distances are measured according to the scales marked on the x- and y-axes.
__
<h3>Vertex</h3>
The vertex is the low point of the graph. The graph is horizontally symmetrical about this point. On this graph, the vertex is (3, -1).
<h3>Y-intercept</h3>
The y-intercept is the point where the graph crosses the y-axis. On this graph, the y-intercept is (0, 8).
<h3>X-intercepts</h3>
The x-intercepts are the points where the graph crosses the x-axis. You will notice they are symmetrically located about the vertex. On this graph, the x-intercepts are (2, 0) and (4, 0).
__
<em>Additional comment</em>
The reminder that these are "points" is to ensure that you write both coordinates as an ordered pair. We know the x-intercepts have a y-value of zero, for example, so there is a tendency to identify them simply as x=2 and x=4. This problem statement is telling you to write them as ordered pairs.
You can't. If you think about the straight line on a graph, those numbers
describe a single point that the line goes through, and they don't tell you
anything about the slope of the line, or where it crosses the x-axis or the
y-axis. So I don't think you can tell the constant of variation from one point.