Answer:for ax^2+bx+c=0 the discriminant is b^2-4ac
there are 3 basic cases of what happens for different discriminants
1. if the discriminant is less than 0, then there are no real zeroes
2. if the discriminant is 0, then it has 1 zero
3. if the discriminant is greater than 0, it has 2 zeroes
so given
0=3x^2-7x+4
a=3,b=-7,c=4
thus the discriminant is (-7)^2-4(3)(4)=49-48=1
the discriminant is 1. 1 is positive, thus the equation has 2 zeroes because the discriminant is greater than 0
the answer is the equation has two zeroes because the discriminant is greater than 0
Step-by-step explanation:
Answer:
I do but i need to remember my user give me a sec
I think the three box.sorry if wrong
The midpoint of the line segment joining points S (8,3) and T (2,-1) is (5, 1)
<h3>How to determine the midpoint of the line segment joining the points?</h3>
The points are given as:
S(8,3) and T(2,-1)
The midpoint of the line segment joining points S(8,3) and T(2,-1) is calculated as:
Midpoint = 0.5 * (x1 + x2, y1 + y2)
So, we have
Midpoint = 0.5 * (8 + 2, 3 - 1)
Evaluate the sum
Midpoint = 0.5 * (10, 2)
Evaluate the product
Midpoint = (5, 1)
Hence, the midpoint of the line segment joining points S (8,3) and T (2,-1) is (5, 1)
Read more about midpoint at:
brainly.com/question/24311350
#SPJ1