The answer is
<span>(x, y) GEOMB S 8 3 Q1 (x + 3, y – 5)
it is obvious </span>
Answer:
I think its A? Not sure though
Step-by-step explanation:
Answer:
18÷9=2
Step-by-step explanation:
1. According to the plots, the curves intersect when
and
.
We can confirm this algebraically.
![\sin(x) + 2 = -\cos(x) + 3](https://tex.z-dn.net/?f=%5Csin%28x%29%20%2B%202%20%3D%20-%5Ccos%28x%29%20%2B%203)
![\sin(x) + \cos(x) = 1](https://tex.z-dn.net/?f=%5Csin%28x%29%20%2B%20%5Ccos%28x%29%20%3D%201)
![\sqrt2 \sin\left(x + 45^\circ\right) = 1](https://tex.z-dn.net/?f=%5Csqrt2%20%5Csin%5Cleft%28x%20%2B%2045%5E%5Ccirc%5Cright%29%20%3D%201)
![\sin\left(x + 45^\circ\right) = \dfrac1{\sqrt2}](https://tex.z-dn.net/?f=%5Csin%5Cleft%28x%20%2B%2045%5E%5Ccirc%5Cright%29%20%3D%20%5Cdfrac1%7B%5Csqrt2%7D)
![x + 45^\circ = \sin^{-1}\left(\dfrac1{\sqrt2}\right) + 360^\circ n \text{ or } x + 45^\circ = 180^\circ - \sin^{-1}\left(\dfrac1{\sqrt2}\right) + 360^\circ n](https://tex.z-dn.net/?f=x%20%2B%2045%5E%5Ccirc%20%3D%20%5Csin%5E%7B-1%7D%5Cleft%28%5Cdfrac1%7B%5Csqrt2%7D%5Cright%29%20%2B%20360%5E%5Ccirc%20n%20%5Ctext%7B%20or%20%7D%20x%20%2B%2045%5E%5Ccirc%20%3D%20180%5E%5Ccirc%20-%20%5Csin%5E%7B-1%7D%5Cleft%28%5Cdfrac1%7B%5Csqrt2%7D%5Cright%29%20%2B%20360%5E%5Ccirc%20n)
(where
is an integer)
![x + 45^\circ = 45^\circ + 360^\circ n \text{ or } x + 45^\circ = 135^\circ + 360^\circ n](https://tex.z-dn.net/?f=x%20%2B%2045%5E%5Ccirc%20%3D%2045%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20n%20%5Ctext%7B%20or%20%7D%20x%20%2B%2045%5E%5Ccirc%20%3D%20135%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20n)
![x = 360^\circ n \text{ or } x = 90^\circ + 360^\circ n](https://tex.z-dn.net/?f=x%20%3D%20360%5E%5Ccirc%20n%20%5Ctext%7B%20or%20%7D%20x%20%3D%2090%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20n)
We get the two solutions we found in the interval [0°, 360°] with
in the first case, and
in the second case.
2. We have
when
. For the given plot domain [0°, 360°], this happens when
.
3. The domain for both equations is all real numbers in general, but considering the given plot, you could argue the domains would be [0°, 360°].
is bounded between -1 and 1, so
is bounded between -1 + 2 = 1 and 1 + 2 = 3, and its range is [1, 3].
Likewise,
is bounded between -1 and 1, so that
is bounded between -1 + 3 = 2 and 1 + 3 = 4, so its range would be [2, 4].
Answer:
pus$y
Step-by-step explanation: