The standard form of the equation of a circle of radius r, with (assuming centre h, k) is given as:
(X-h)^2 + (y-k)^2 = r^2
As we are required to write an equation in standard form for the circle with radius 9 centred at the origin.
Centre(h,k)=(0,0), r=9
Substituting these values into the standard form of the equation of a circle given above:
(X-0)^2 + (y-0)^2 = 9^2
X^2 + y^2 =81
The standard form is x^2 + y^2 =81
I’m pretty sure this is right
A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>
En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)
En consecuencia, obtenemos las siguientes proporciones:
AP'/AP'' = MN/BC = 1/2 (1)
Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:


A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.
Para aprender sobre triángulos semejantes: brainly.com/question/21730013
#SPJ1
Slope 1/7 ; easiest way to remember is rise over run
Answer: Mary need to make at-least 95 on her fourth test to earn an A in her algebra course.
Step-by-step explanation:
Let x be the grades scored by Mary in the fourth algebra test.
Mary has grades of 95, 82, 88 on her first three algebra tests.
Then, the combined scores in four test will become = 95+82+88+x = 265+x
Average score = (Sum of all scores) ÷ (Number of tests)

As per given ,
To earn an A in an algebra course, a student must have a test average of at least 90.
i.e. Average score ≥ 90

Hence, Mary need to make at-least 95 on her fourth test to earn an A in her algebra course.