If their is a teacher or a Professor she should go there first if it’s a small fire she needs a fire blanket to take out small fire after reaching an adult
Idk the genotype but I have to answer a question so
Answer:
Two members of the excavate clade that can cause disease are <u><em>diplomonads and parabasalids</em></u>
Explanation:
The excavate clade comprises of unicellular organisms which are eukaryotic. This group contains free-living organisms as well as organisms which form symbiotic relationships.
The diplomonads can be described as a group of flagellates which are considered to be parasitic. Some of them are even parasites to the humans.
The parabasalids are a group of flagellated protists within the supergroup Excavata. These organisms also form parasitic relationships.
Answer:
It wil swell and burst
Explanation:
"pure" water is only H2O so there are no solutes, because of osmosis, water will enter the red blood cell that does contain solutes until the cell and the surrounding environment (in this case the water) are iso-osmotic, this will never happen though because the water contains no solutes.
Answer:
Photosynthesis and metabolism are among the most complex areas in biology so given the nature of this forum I've kept the answers simple and brief.
Carbon is of central importance to all biological systems due to its special bonding properties allowing it to form various bonds with other atoms and produce a wonderfully complex range of molecules used by life.
In photosynthesis inorganic carbon in carbon dioxide gas is fixed to hydrogen to produce sugar, an organic molecule. In this case the carbon gains electrons so it is 'reduced' and this process requires energy in the form of light. Once in sugar form, the process can be reversed and the carbon can be oxidised back into carbon dioxide during cellular respiration, releasing energy.
So in photosynthesis, the carbon from carbon dioxide is reduced to form a sugar molecule. When transitioning to respiration, the carbon in the sugar is oxidised to form carbon dioxide again in the reverse reaction to photosynthesis.
The carbon is transferred between molecules through various intermediate steps during these processes, involving enzymes (biological catalysts) to assist in cleaving specific bonds at each stage. During cellular respiration (an energy release reaction) as the carbon is successively oxidised electrons are liberated that are used as part of the energy release. These electrons are captured or 'carried' by special organic molecules called NAD and FAD (reducing them) which in turn can then be oxidised to produce the universal energy currency of life: ATP molecules. ATP is a small bio molecule containing a high energy phosphorous bond that can be broken to release energy to do cellular work. It is used by all life that we know of and is the ultimate product of cellular respiration.