1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
4 years ago
15

Math please help me with it

Mathematics
1 answer:
seropon [69]4 years ago
4 0
I hope this helps you

You might be interested in
Hanna says you cannot represent the fraction 1/4 on the number line.
blsea [12.9K]

Answer: tHE SECOND ONE

Step-by-step explanation: i had a test on this

5 0
3 years ago
Read 2 more answers
What are the solutions to the quadratic equation x2 - 16 = 0?
enot [183]
X=4 x=-4 Due to the difference in squares theorem
7 0
3 years ago
There is a 10% sales tax on a purchase of $13.50 how much is the tax
raketka [301]

Answer:

1.35

Step-by-step explanation:

13.5/100 times 10 = 1.35

8 0
4 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
3 years ago
Need this one ASAP please
babunello [35]

Answer:

28..

Step-by-step explanation:

divide 35 by 1 1/4...

7 0
3 years ago
Read 2 more answers
Other questions:
  • Heeeeeelllp please. 15 points
    6·2 answers
  • Simplify: 2{10-5+x[1+3(6-2)]}
    5·1 answer
  • Write the polynomial in standard form. Then name the polynomial based on its degree and number of terms. 2-11x^2-8x+6x^2
    8·1 answer
  • Clark, a widower, maintains a household for himself and his two dependent preschool children. For the year ended December 31, 20
    5·2 answers
  • What is the volume rounded to the nearest tenth?
    10·1 answer
  • Which best describes the scale factor for each dilation?
    9·2 answers
  • What is 3(4x + 9) (im new to this subject of math)
    11·2 answers
  • Select the correct answer.
    13·1 answer
  • 40 hours is what part of 120 hours
    14·1 answer
  • Please solve the equation: -2x(-3x2^y)(2y)=?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!