(3/5) * 65
3*(65/5)
3*13
39
Answer:
x > -5/8
Step-by-step explanation:
Simplify by combining x and 4/5 and then moving 4 to the left side of x
-x * 4/5 + 3/10 < 8/10
-4x/5 + 3/10 < 8/10
Now we cancel the common factor of 8 and 10.
Factor 2 out of 8
-4x/5 + 3/10 < 2(4)/10
2 from 10
-4x/5 + 3/10 < 4/5
Now move all the terms not containing x to the right side
Lets subtract 3/10 from both sides
-4x/5 < 4/5 - 3/10
Now we multiply by 2/2 to write 4/5 with a common denomi.
-4x/5 < 4/5 * 2/2 - 3/10
Now write with a common denom of 10 and multiply by 1
-4x/5 < 4*2/5 * 2 - 3/10
5 by 2
-4x/5 < 4 * 2/10 - 3/10
Combine
-4x/5 < 4 * 2 - 3/10
Simplify the numerator by multiplying then subtracting
-4x/5 < 8 - 3/10
-4x/5 < 5/10
Cancel the common factor of 5 and 10...
-4x/5 < 5(1)/10
-4x/5 5* 1/5 * 2
-4x/5 < 1/2
Now we divide by -1
-4x/5)/-1 > 1/2)/-1
4x/5 > 1/2)-1
4x/5 > -1/2
Multiply both sides by 5 and cancel common factors. (5)
4x * 5 > -1/2 * 5
4x > -1/2 * 5
4x > -5/2
Now divide by 4 in each term
4x/4 > -5/2)/4
x > -5/2)/4
Multiply the numer by the reciprocal of the denom
x > -5/1 * 1/4
x > -5/4 * 2
x > -5/8
rationalizing the numerator, or namely, "getting rid of that pesky radical at the top".
we simply multiply top and bottom by a value that will take out the radicand in the numerator.
![\bf \cfrac{\sqrt[3]{144x}}{\sqrt[3]{y}}~~ \begin{cases} 144=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\\ \qquad 2^3\cdot 18 \end{cases}\implies \cfrac{\sqrt[3]{2^3\cdot 18x}}{\sqrt[3]{y}}\implies \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}} \\\\\\ \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}}\cdot \cfrac{\sqrt[3]{(18x)^2}}{\sqrt[3]{(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)(18x)^2}}{\sqrt[3]{(y)(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)^3}}{\sqrt[3]{18^2x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B144x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A144%3D2%5Ccdot%202%5Ccdot%202%5Ccdot%202%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%202%5E3%5Ccdot%2018%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B2%5E3%5Ccdot%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%20%2018x%7D%7D%7B%5Csqrt%5B3%5D%7By%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%2818x%29%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%28y%29%2818x%29%5E2%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Csqrt%5B3%5D%7B%2818x%29%5E3%7D%7D%7B%5Csqrt%5B3%5D%7B18%5E2x%5E2y%7D%7D)
![\bf \cfrac{2(18x)}{\sqrt[3]{324x^2y}}~~ \begin{cases} 324=2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\\ \qquad 12\cdot 3^3 \end{cases}\implies \cfrac{36x}{\sqrt[3]{12\cdot 3^3x^2y}} \\\\\\ \cfrac{36x}{3\sqrt[3]{12x^2y}}\implies \cfrac{12x}{\sqrt[3]{12x^2y}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2%2818x%29%7D%7B%5Csqrt%5B3%5D%7B324x%5E2y%7D%7D~~%0A%5Cbegin%7Bcases%7D%0A324%3D2%5Ccdot%202%5Ccdot%203%5Ccdot%203%5Ccdot%203%5Ccdot%203%5C%5C%0A%5Cqquad%2012%5Ccdot%203%5E3%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B36x%7D%7B%5Csqrt%5B3%5D%7B12%5Ccdot%203%5E3x%5E2y%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B36x%7D%7B3%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D%5Cimplies%20%5Ccfrac%7B12x%7D%7B%5Csqrt%5B3%5D%7B12x%5E2y%7D%7D)
Answer:
vertex form automatically gives you your vertex and your y intercept so all you need to do is graph. Hope this helps
Step-by-step explanation:
Answer:
In the first question it is the 2nd table. On the second it is : No, the xost of the 9 shirts is incorrect