Answer:
Go in notifications, it'll show if it was answered. If it doesn't show that a person answered it, wait a while, someone might respond :)
Explanation:
On the Top right of your screen, theres a bell button. Click that and it will show all the notifications. it will also show if a person answered it.
It will pop up like
*random username* answered your question! ]
Hope this helped
Answer:
25m/s²
Explanation:
Using one of the equations of motion.
v² = u²+2as where
v is the final velocity of the astronaut
u is his initial velocity
a = -g (the acceleration will be acceleration due to gravity since he is acting under the influence of gravity. The value is negative because the astronaut jumps up to a particular height)
s = H = total height covered
The equation will then become;
v² = u²-2gH
Given
u = 60m/s
v = 0m/s
g = ?
H = 72m
Substituting the given value into the equation;
0² = 60²-2g(72)
0 = 3600-144g
-3600 = -144g
g = -3600/-144
g = 25m/s²
The magnitude of his acceleration due to gravity on the planet is 25m/s²
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²
Answer:
0.339 kgm²
Explanation:
We know the period of this pendulum, T = 2π√(I/mgh) where I = moment of inertia of the object about the pivot axis, m = mass of object = 2.15 kg, g = acceleration due to gravity = 9.8 m/s² and h = distance of center of mass of object from pivot point = 0.163 m.
Since T = 2π√(I/mgh), making I subject of the formula, we have
I = mghT²/4π²
Now since it takes 241 s to complete 113 cycles, then it takes 241 s/113 cycles to complete one cycle.
So, T = 241 s/113 = 2.133 s
So, Substituting the values of the variables into I, we have
I = mghT²/4π²
I = 2.15 kg × 9.8 m/s² × 0.163 m × (2.133 s)²/4π²
I = 15.63/4π² kgm²
I = 0.396 kgm²
Now from the parallel axis theorem, I = I' + mh² where I' = moment of inertia of object with respect to its center of mass about an axis parallel to the pivot axis
I' = I - mh²
I' = 0.396 kgm² - 2.15 kg × (0.163 m)²
I' = 0.396 kgm² - 0.057 kgm²
I' = 0.339 kgm²
When the ion concentrations in the cathode half-cell are increased by a factor of 10, the change in the cell voltage is ln10 times greater. This comes from the Nernst equation. Use variation to solve for the cell voltage in terms of the initial cell voltage before increasing the ion concentrations by 10.