1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
15

How does the period affects the centripetal force?

Physics
2 answers:
Anna71 [15]3 years ago
8 0

Answer:According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R.

Explanation:The Period T. The time T required for one complete revolution is called the period. For. constant speed. v = 2π r T holds.

aleksklad [387]3 years ago
3 0
According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R
You might be interested in
g In 1956, Frank Lloyd Wright proposed the construction of a mile-high building in Chicago. Suppose the building had been constr
Lorico [155]

To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.

In other words the acceleration can be described as

a = \frac{GM}{r^2}

Where

G = Gravitational Universal Constant

M = Mass of Earth

r = Radius of Earth

This equation can be differentiated with respect to the radius of change, that is

\frac{da}{dr} = -2\frac{GM}{r^3}

da = -2\frac{GM}{r^3}dr

At the same time since Newton's second law we know that:

F_w = ma

Where,

m = mass

a =Acceleration

From the previous value given for acceleration we have to

F_W = m (\frac{GM}{r^2} ) = 600N

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:

dF_W = mda

dF_W = m(-2\frac{GM}{r^3}dr)

dF_W = -2(m\frac{GM}{r^2})(\frac{dr}{r})

dF_W = -2F_W(\frac{dr}{r})

But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:

dF_W = -2(600)(\frac{1.6*10^3}{6.37*10^6})

dF_W = -0.3N

Therefore there is a weight loss of 0.3N every kilometer.

4 0
3 years ago
Two people must have the same speed and velocity if
RideAnS [48]
If they both are moving with the same speed and direction
i.e. covering the same distance in the same time interval in the same direction
7 0
3 years ago
Read 2 more answers
A 50 kg skydiver is falling downwards and accelerating 6 m/s2 down. What is the net force on the skydiver?
Montano1993 [528]

Net Force = (mass) x (acceleration)  (Newton #2)

Net Force = (50 kg) x (6 m/s² down)

Net Force = (50 * 6) (kg-m/s² down)

<em>Net Force = 300 Newtons down</em>

6 0
3 years ago
Calculate the total energy of 4.0 kg object moving horizontally at 20 m/s 50 meters above the surface.
Serhud [2]

Answer:

Correct answer:  E total = 2,800 J

Explanation:

Given:

m = 4 kg   the mass of the object

V = 20 m/s  the speed (velocity) of the object

H = 50 m the height of the object above the surface

E total = ? J

The total energy of an object is equal to the sum of potential and kinetic energy

E total = Ep + Ek

Ep = m g H   we take g = 10 m/s²

Ep = 4 · 10 · 50 = 2,000 J

Ek = m V² / 2

Ek = 4 · 20² / 2 = 2 · 400 = 800 J

E total = 2,000 + 800 = 2,800 J

E total = 2,800 J

God is with you!!!

4 0
3 years ago
Suppose that the space shuttle Columbia accelerates at 14.0 m/s2 for 8.50 minutes after takeoff.
givi [52]

Answer:

A. speed = 7.14 Km/s

B. distance = 1820.7 Km

Explanation:

Given that: a = 14.0 m/s^{2}, t = 8.50 minutes.

But,

t = 8.50 = 8.50 x 60

  = 510 seconds

A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;

v = u + at

where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.

u = 0

So that,

v = 14 x 510

 = 7140 m/s

The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.

B. the distance traveled can be determined by applying second equation of motion.

s = ut + \frac{1}{2}at^{2}

where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.

u = 0

s = \frac{1}{2}at^{2}

  = \frac{1}{2} x 14 x (510)^{2}

 = 7 x 260100

 = 1820700 m

The distance that the shuttle has traveled during the given time is  1820.7 Km.

5 0
3 years ago
Other questions:
  • A typical stellar spectrum (a plot of intensity versus wavelength) includes a number of deep indentations in which the intensity
    11·1 answer
  • How do I disable internal laptop display on Linux? So that I can project to external monitor! video=LVDS-1:d and video=eDP-1:d w
    8·1 answer
  • A 500 μF capacitor is wired in series with a 5 V battery and a 20 kΩ resistor. What is the voltage across the capacitor after 20
    15·2 answers
  • A thin hoop is supported in a vertical plane by a nail. What should the radius of the hoop be in order for it to have a period o
    5·1 answer
  • While driving down the road, an unfortunate bug strikes the windshield of a bus
    10·1 answer
  • Which atmospheric condition is most likely responsible for the wind blowing the clouds from the sea towards the land?
    8·1 answer
  • In a game of tug of war, Team A pulls with a force 850N, Team B pulls with force of 975N. Calculate the net force on the rope. B
    7·1 answer
  • For factors that affect capillarity<br>​
    11·2 answers
  • Closed clusters are groups of closely grouped stars that are located along the spiral disk of a galaxy.
    13·2 answers
  • HERES THE ANSWER AND QUESTION
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!