Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
The correct answer is:
<span>2. sound intensity is a more objective and physical attribute of a sound wave because loudness can vary from person to person
indeed, sound intensity is a measurable quantity, and so it is objective, while loudness is the subjective perception of the sound level, so it varies from person to person.</span>
Answer: Option (b) is the correct answer.
Explanation:
The force of gravity acting on an object helps in determining the weight of an object. But a place where there will be no gravity or have zero gravitational pull then it means the person will be weightless.
For example, force of gravity on moon is zero which means any object or person on moon will be weightless.
On the other hand, when a child is in the air as she plays on a trampoline then it means gravitational pull form the earth is acting on it. So, it will definitely has some weight.
Similarly, a scuba diver exploring a deep-sea wreck is under the ground where there will be force of gravity. Hence, it will also have some weight.
Thus, we can conclude that an astronaut on the Moon is the person who is weightless.
Answer:
B. 80 m/s²
Explanation:
F = ma
a = F/m = (40 N)/(0.5 kg) = 80 m/s²
Answer:
0.2 J
Explanation:
The pendulum forms a right triangle, with hypotenuse of 50 cm and base of 30 cm. The height of this triangle can be found with Pythagorean theorem:
c² = a² + b²
(50 cm)² = a² + (30 cm)²
a = 40 cm
The height of the triangle is 40 cm. The height of the pendulum when it is at the bottom is 50 cm. So the end of the pendulum is lifted by 10 cm. Assuming the mass is concentrated at the end of the pendulum, the potential energy is:
PE = mgh
PE = (0.200 kg) (9.8 N/kg) (0.10 m)
PE = 0.196 J
Rounding to one significant figure, the potential energy is 0.2 J.