Wouldn't everything fall?
<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1
The top row of boxes is " F O R C E " .
Answer:
energy required=-energy lost
energy lost=change in kinetic energy
EL=1/2 mv^2
The magnitude of the air drag is 784 N
Explanation:
An object falling down reaches the terminal velocity when the magnitude of the air drag acting on it becomes equal to the weight of the object. Mathematically, this condition can be written as:

where
is the magnitude of the air drag
m is the mass of the object
g is the acceleration of gravity
In this problem, we have
m = 80 kg is the mass of the airman
is the acceleration of gravity
Substituting into the formula, we find:

Learn more about forces here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly