<h3>
Answer: 10.1 cm approximately</h3>
=====================================================
Explanation:
The double tickmarks show that segments DE and EB are the same length.
The diagram shows that DB = 16 cm long
We'll use these facts to find DE
DE+EB = DB
DE+DE = DB
2*DE = DB
DE = DB/2
DE = 16/2
DE = 8
-------------
Now let's focus on triangle DEC. We just found the horizontal leg is 8 units long. The vertical leg is EC which is unknown for now. We'll call it x. The hypotenuse is CD = 9
Use the pythagorean theorem to find x
a^2+b^2 = c^2
8^2+x^2 = 9^2
64+x^2 = 81
x^2 = 81 - 64
x^2 = 17
x = sqrt(17)
That makes EC to be exactly sqrt(17) units long.
If you follow those same steps for triangle ADE, then you'll find the missing length is AE = 6
---------------
So,
AC = AE+EC
AC = 6 + sqrt(17)
AC = 10.1231056256177
AC = 10.1 cm approximately
y = -1/2 + 1 is the y=mx + b equation
First set up your two equations:
x + y = 90
x = 2y - 30
Then substitute what x equals in the second equation into the first equation:
(2y -30) + y = 90
Now solve for y:
3y -30 = 90
3y = 120
y = 40
Then use y = 40 and substitute the value for y into one of your original equations and solve for x. I'll choose the first one, but either one will work.
x+ 40 = 90
x = 50
So your solution is x = 50 and y = 40
Diagonals = n(n-3)/n where n is the number of sides
if a polygon have 10 sides
= 10(10-3)/10
= 7
thus, the polygon have 7 diagonals.
Well, we see that it is a straight line
so the derivitive would be perpendicular
5/4 times what=-1
-4/5
the slope is -4/5