It would be 0.38 the 8 is repeating
Answer:
The game costs $9
Step-by-step explanation:
I wrote an equation using the variable "t" for the total cost of the game.
6=2/3t
t=6/2/3
t=(6/1)(3/2)
t=18/2
t=9
Answer:
1
Step-by-step explanation:
an integer is a natural counting number, such as 1...2...3...4... and so on....
zero is not considered an integer because it is a neutral number.
therefore, the smallest possible positive integer would have to be 1!
i hope this helped you!
stay safe!
:)
Answer:
The probability that Scott will wash is 2.5
Step-by-step explanation:
Given
Let the events be: P = Purple and G = Green
![P = 2](https://tex.z-dn.net/?f=P%20%3D%202)
![G = 3](https://tex.z-dn.net/?f=G%20%3D%203)
Required
The probability of Scott washing the dishes
If Scott washes the dishes, then it means he picks two spoons of the same color handle.
So, we have to calculate the probability of picking the same handle. i.e.
![P(Same) = P(G_1\ and\ G_2) + P(P_1\ and\ P_2)](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20P%28G_1%5C%20and%5C%20G_2%29%20%2B%20P%28P_1%5C%20and%5C%20P_2%29)
This gives:
![P(G_1\ and\ G_2) = P(G_1) * P(G_2)](https://tex.z-dn.net/?f=P%28G_1%5C%20and%5C%20G_2%29%20%3D%20P%28G_1%29%20%2A%20P%28G_2%29)
![P(G_1\ and\ G_2) = \frac{n(G)}{Total} * \frac{n(G)-1}{Total - 1}](https://tex.z-dn.net/?f=P%28G_1%5C%20and%5C%20G_2%29%20%3D%20%5Cfrac%7Bn%28G%29%7D%7BTotal%7D%20%2A%20%5Cfrac%7Bn%28G%29-1%7D%7BTotal%20-%201%7D)
![P(G_1\ and\ G_2) = \frac{3}{5} * \frac{3-1}{5- 1}](https://tex.z-dn.net/?f=P%28G_1%5C%20and%5C%20G_2%29%20%3D%20%5Cfrac%7B3%7D%7B5%7D%20%2A%20%5Cfrac%7B3-1%7D%7B5-%201%7D)
![P(G_1\ and\ G_2) = \frac{3}{5} * \frac{2}{4}](https://tex.z-dn.net/?f=P%28G_1%5C%20and%5C%20G_2%29%20%3D%20%5Cfrac%7B3%7D%7B5%7D%20%2A%20%5Cfrac%7B2%7D%7B4%7D)
![P(G_1\ and\ G_2) = \frac{3}{10}](https://tex.z-dn.net/?f=P%28G_1%5C%20and%5C%20G_2%29%20%3D%20%5Cfrac%7B3%7D%7B10%7D)
![P(P_1\ and\ P_2) = P(P_1) * P(P_2)](https://tex.z-dn.net/?f=P%28P_1%5C%20and%5C%20P_2%29%20%3D%20P%28P_1%29%20%2A%20P%28P_2%29)
![P(P_1\ and\ P_2) = \frac{n(P)}{Total} * \frac{n(P)-1}{Total - 1}](https://tex.z-dn.net/?f=P%28P_1%5C%20and%5C%20P_2%29%20%3D%20%5Cfrac%7Bn%28P%29%7D%7BTotal%7D%20%2A%20%5Cfrac%7Bn%28P%29-1%7D%7BTotal%20-%201%7D)
![P(P_1\ and\ P_2) = \frac{2}{5} * \frac{2-1}{5- 1}](https://tex.z-dn.net/?f=P%28P_1%5C%20and%5C%20P_2%29%20%3D%20%5Cfrac%7B2%7D%7B5%7D%20%2A%20%5Cfrac%7B2-1%7D%7B5-%201%7D)
![P(P_1\ and\ P_2) = \frac{2}{5} * \frac{1}{4}](https://tex.z-dn.net/?f=P%28P_1%5C%20and%5C%20P_2%29%20%3D%20%5Cfrac%7B2%7D%7B5%7D%20%2A%20%5Cfrac%7B1%7D%7B4%7D)
![P(P_1\ and\ P_2) = \frac{1}{10}](https://tex.z-dn.net/?f=P%28P_1%5C%20and%5C%20P_2%29%20%3D%20%5Cfrac%7B1%7D%7B10%7D)
<em>Note that: 1 is subtracted because it is a probability without replacement</em>
So, we have:
![P(Same) = P(G_1\ and\ G_2) + P(P_1\ and\ P_2)](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20P%28G_1%5C%20and%5C%20G_2%29%20%2B%20P%28P_1%5C%20and%5C%20P_2%29)
![P(Same) = \frac{3}{10} + \frac{1}{10}](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20%5Cfrac%7B3%7D%7B10%7D%20%2B%20%5Cfrac%7B1%7D%7B10%7D)
![P(Same) = \frac{3+1}{10}](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20%5Cfrac%7B3%2B1%7D%7B10%7D)
![P(Same) = \frac{4}{10}](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20%5Cfrac%7B4%7D%7B10%7D)
![P(Same) = \frac{2}{5}](https://tex.z-dn.net/?f=P%28Same%29%20%3D%20%5Cfrac%7B2%7D%7B5%7D)
19 divided by 40 is .475 so it’s -29.475