They form molecules which can be in solution form if diluted in water, but some do form solutions on exposure to the atmosphere i.e they are deliquescent like pellets of sodium hydroxide
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If
, then the bond is non-polar. - If
, then the bond will be covalent. - If
, then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1

As,
is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.
Viscosity is related to the parallel shear force acted by the fluid. In lay man's term, viscosity is the ease of how the fluid flows. The faster the flow is, the lower the viscosity (and vice versa). On the other hand, osmolarity pertains to the concentration of a component in a mixture expressed in number of solute particles per liter of the mixture.
Answer: so the answer would likely be
Explanation: