Of what type of solutions
like any type
Answer:
3.84 Ω
Explanation:
From the question given above, the following data were obtained:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = IV
Recall:
V = IR
Divide both side by R
I = V/R
P = V/R × V
P = V² / R
Where:
P => Electrical power
V => Voltage
I => Current
R => Resistance
With the above formula (i.e P = V²/R), we can calculate resistance as illustrated below:
Electrical power (P) = 150 W
Voltage (V) = 24 V
Resistance (R) =?
P = V²/R
150 = 24² / R
150 = 576 / R
Cross multiply
150 × R = 576
Divide both side by 150
R = 576 / 150
R = 3.84 Ω
Thus, the resistance is 3.84 Ω
Answer:
A. There were new technologies and new innovations to drive the sale of goods, since people could afford them
Explanation:
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
Answer:
Oil is extracted by three general methods: rendering, used with animal products and oleaginous fruits; mechanical pressing, for oil-bearing seeds and nuts; and extracting with volatile solvents, employed in large-scale operations for a more complete extraction than is possible with pressing.
Explanation: