1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GenaCL600 [577]
4 years ago
11

Bob does 10 miles on his bike every day. If he continues to ride his bike at this pace, how many miles will he go in h days?

Mathematics
1 answer:
pychu [463]4 years ago
7 0

Answer: in how many days?

Step-by-step explanation:

You might be interested in
Koji is installing a rectangular window in an office building. The window is 823 ft wide and 534 ft high. The formula for the ar
IrinaK [193]
A = b * h
b = 8 2/3
h = 5 3/4

A = 8 2/3 * 5 3/4.....turn to improper fractions
A = 26/3 * 23/4
A = 598/12
A = 49 5/6 ft^2 <====
4 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Which of the following values of m will result in a true statement when substituted into the given equation?
Solnce55 [7]

Answer:

C. m = 4.1 is the answer

6 0
3 years ago
Please help me with math question
djverab [1.8K]
M∠NQS = m∠BQS - m∠BQN = 78 - 48 = 30°
8 0
3 years ago
Read 2 more answers
I clearly don't know how to do it if i did i wouldn't be asking for help.
kow [346]

Answer:

132 degrees

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • How does a digit in the ten thousands place compared to a digit in the thousands place
    6·1 answer
  • What does p equal and x equal and x equal
    9·1 answer
  • Find the output, g, when the input, r, is 3.<br> g = -5r+13<br> g=_____
    7·1 answer
  • Simply
    7·1 answer
  • Mark walked 1212 miles in 5 hours. How many miles did Mark walk in 1 hour?
    14·1 answer
  • Which of these constructions is impossible using only a compass and straightedge
    7·1 answer
  • Can someone please help me <br><br> Solve for y. Show your work<br> 1. y - 3x &lt; 5
    14·1 answer
  • How many calories will Jacob burn in 1 minute while roller-skating????<br>fast plz
    7·1 answer
  • the sum of the measures of the angles of all traingles is 180. If one angle of the traingle measures of each of the other two an
    10·2 answers
  • A mixture of purple paint contains (6 teaspoons of red paint and (5 teaspoons of blue
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!