1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
2 years ago
13

This building is one of the most identifiable structures in its city skylines. It has a square foundation and 28 floors. The bui

lding has four triangular exterior faces that meet at points at the top of the structure.
What is the Solid figure
what is the building
HELP 15 POINTS
Mathematics
1 answer:
Ivanshal [37]2 years ago
4 0
It's a rectangular prism
You might be interested in
Need help ace plsssz​
Paladinen [302]

Answer:

150 multiply the 2 numbers

hope this helps

have a good day :)

Step-by-step explanation:

5 0
2 years ago
What’s the answer thank you for your help
frez [133]
The formula for finding the sum of a finite geometric series is
S_n = a_1( \frac{1-r^n}{1-r} )

n = 17, a_1 = 3, r = 2

Substitute into the formula and you get 393213
3 0
3 years ago
Evaluate the following definite integral​
mihalych1998 [28]

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Mari packs the same number of oranges in each bag. How many oranges does Mari need to pack 9 bags? How can you determine the num
GuDViN [60]

Answer:

Mari needs 27 and 39 oranges for 9 and 13 bags respectively.

Step-by-step explanation:

Consider the below figure attached with this question.

From the below table it is clear the she need 9 oranges for 3 bags.

Number of oranges in each bag = 9/3 = 3 oranges

She packs 3 oranges in each bag.

For 9 bags, the number of oranges = 9×3 = 27 oranges.

For 13 bags, the number of oranges = 13×3 = 39 oranges.

Therefore, Mari needs 27 and 39 oranges for 9 and 13 bags respectively.

3 0
3 years ago
Prove that: <br>(1 + Tan²A) Cos²A = 1​
Artyom0805 [142]

Step-by-step explanation:

=(1+ sin^2 A/cos^2 A).cos^2 A

=[(cos^2 a+sin^2 a)/cos^2 a].cos^2 A

=[1/cos^2 a] . cos^2 a

=1

6 0
2 years ago
Other questions:
  • *perimeter * rec =rectangle <br> Plz go step by step.
    7·1 answer
  • Multiply (b+3)*(a+7)
    11·2 answers
  • M + 12 = 10 solve equation
    15·1 answer
  • In triangle ABC, ∠A and ∠B are complementary, where cos A = 0.24. What is the measure, to the nearest degree of, ∠B?
    14·1 answer
  • Find the area in square feet of a rectangle with a length of 3 feet and a width of 2 7/8 feet.
    5·1 answer
  • After Germany was defeated in 1945, the country was divided by the Allies. Choose ALL true statements about the "Iron Curtain" f
    13·1 answer
  • How many degrees is angle x?
    11·1 answer
  • What is the mode of the following numbers 5,4, 10, 3, 3, 4, 7, 4, 6, 5, 11, 9, 5, 7
    9·2 answers
  • Paula wants to divide 480 tomatoes
    8·2 answers
  • Directions: Review writing expressions to represent situations. Identify the variables,coefficients, and constants.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!