Answer:
30 Hours
Step-by-step explanation:
8h=240
240÷8=30
Answer:
<em>coefficient</em><em> </em><em> </em><em>because</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>so</em><em> </em><em>they</em><em> </em><em>can</em><em> </em><em>not</em><em> </em><em>be</em><em> </em><em>constant</em><em> </em><em>because</em><em> </em><em>it</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>in</em><em> </em><em>every</em><em> </em><em>week</em>
<h2>
Answer:</h2>
The ratio of the area of region R to the area of region S is:
<h2>
Step-by-step explanation:</h2>
The sides of R are in the ratio : 2:3
Let the length of R be: 2x
and the width of R be: 3x
i.e. The perimeter of R is given by:
( Since, the perimeter of a rectangle with length L and breadth or width B is given by:
)
Hence, we get:
i.e.
Also, let " s " denote the side of the square region.
We know that the perimeter of a square with side " s " is given by:
Now, it is given that:
The perimeters of square region S and rectangular region R are equal.
i.e.
Now, we know that the area of a square is given by:
and
Hence, we get:
and
i.e.
Hence,
Ratio of the area of region R to the area of region S is: