<span>we have that
the cube roots of 27(cos 330° + i sin 330°) will be
</span>∛[27(cos 330° + i sin 330°)]
we know that
e<span>^(ix)=cos x + isinx
therefore
</span>∛[27(cos 330° + i sin 330°)]------> ∛[27(e^(i330°))]-----> 3∛[(e^(i110°)³)]
3∛[(e^(i110°)³)]--------> 3e^(i110°)-------------> 3[cos 110° + i sin 110°]
z1=3[cos 110° + i sin 110°]
cube root in complex number, divide angle by 3
360nº/3 = 120nº --> add 120º for z2 angle, again for z3
<span>therefore
</span>
z2=3[cos ((110°+120°) + i sin (110°+120°)]------ > 3[cos 230° + i sin 230°]
z3=3[cos (230°+120°) + i sin (230°+120°)]--------> 3[cos 350° + i sin 350°]
<span>
the answer is
</span>z1=3[cos 110° + i sin 110°]<span>
</span>z2=3[cos 230° + i sin 230°]
z3=3[cos 350° + i sin 350°]<span>
</span>
9*(x-1)=2x-7
First get rid of your parenthesis by distributing.
9x-9=2x-7
Then all you have to do is isolate the variable
9x=2x+2
7x=2
so x= 2/7
Since

Is a perfect square, we can think of the "-6" at the end as a "+4-10" and we have

Which is the required form
Aplicando multiplicación cruzada, tiene-se que el valor de w es w = 9.
- Cuando una proporción es dada, con una igualdade de duas proporciones, puede-se aplicar multiplicación cruzada entre ellas.
En este problema, la ecuación que relaciona las proporciones es dada por:

Aplicando multiplicación cruzada:




El valor de w es w = 9.
Un problema similar es dado en brainly.com/question/24615636