Answer:
S=64
Step-by-step explanation:
if the s is what your looking for
Answer:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
Step-by-step explanation:
Suppose that we have a cube with sidelength M.
if we rescale this measure with a scale factor 8, we get 8*M
Now, if previously the area of one side was of order M^2, with the rescaled measure the area will be something like (8*M)^2 = 64*M^2
This means that the ratio of the surfaces/areas will be 64.
(and will be the same for a pyramid, a rectangle, etc)
Then the correct options will be the ones related to surfaces, that are:
The scaled surface area of a square pyramid to the original surface area.
The scaled area of a triangle to the original area.
Answer:
Step-by-step explanation:
(a+b)^2=a^(2)+2ab+b^(2)
(a-b)^2=a^(2)-2ab+b^(2)
13)
(x+2)^(2)-(x-1)^2
x^(2)+4x+4-(x^(2)-2x+1)
x^(2)+4x+4-x^(2)+2x-1
6x+3
15)
(x+5)^(2)-(x+1)^2
x^(2)+10x+25-(x^(2)+2x+1)
x^(2)+10x+25-x^(2)-2x-1
8x+24
Answer:
8/21
Step-by-step explanation:
1- 2/7 - 1/3 = 21/21 - 6/21 - 7/21 = 8/21