Answer:
The intermediate step are;
1) Separate the constants from the terms in x² and x
2) Divide the equation by the coefficient of x²
3) Add the constants that makes the expression in x² and x a perfect square and factorize the expression
Step-by-step explanation:
The function given in the question is 6·x² + 48·x + 207 = 15
The intermediate steps in the to express the given function in the form (x + a)² = b are found as follows;
6·x² + 48·x + 207 = 15
We get
1) Subtract 207 from both sides gives 6·x² + 48·x = 15 - 207 = -192
6·x² + 48·x = -192
2) Dividing by 6 x² + 8·x = -32
3) Add the constant that completes the square to both sides
x² + 8·x + 16 = -32 +16 = -16
x² + 8·x + 16 = -16
4) Factorize (x + 4)² = -16
5) Compare (x + 4)² = -16 which is in the form (x + a)² = b
Answer:
5
Step-by-step explanation:
Let, the unknown side be x.
1/2 × 6.6m × xm = 16.5m²
or, x= 33/6.6
x= 5
Answer:
A. <u>4</u> trucks will make $80 because 4 × 20 = 80, so they need to wash <u>38</u> cars to make the other $380 because 38 × 10 = 380.
($80 + $380 = $460)
B. <u>15</u> trucks will make $300 because
15 × 20 = 300, so they need to wash <u>16</u> cars to make the other $160 because 16 × 10 = 160. ($300 + $160 = $460)
C. <u>21</u> trucks will make $420 because
21 × 20 = 420, so they need to wash <u>4</u> cars to make the other $40 because 4 × 10 = 40.
($420 + $40 = $460)
D. <u>27</u> trucks will make $540, so they won't have to wash any cars because they would have already exceeded their goal of $460.
Not sure what to do for letter E. Sorry. I hope the rest makes sense though :)
Answer: First solve the parentheses using order of operations. Then add and subtract from left to right.
Demo:
(3 * 11) = 33
Equation now looks like:
63 - 21 + 33
63 - 21 = 42
Equation now looks like:
42 + 33
42 + 33 = 75
The value of this expression is 75.
You do 90-45 bc the whole angel must equal 90