Answer:
Explanation:
Given
mass of object is m
Mass of planet is M
radius of planet is R
Total Energy associated with mass m at a height h above planet is Gravitational Potential Energy which is given by

When it falls on earth with some velocity v
=Kinetic Energy+Potential Energy

As Energy is conserved therefore




Answer:

Explanation:
given,
mass of the cart 1, m₁ = 310 g
speed of car 1 , v₁ = 1.25 m/s
mass of cart 2, m₂ = 260 g
speed of cart 2, v₂ = -1.33 m/s
speed of center of mass




Hence, speed of center of mass of the system is equal to 0.0732 m/s
Answer:
(a) W = 8.66 J
(b) Velocity = 2.40 m/s
Explanation:
(a) Work done is given as the product of force and displacement. That is:
W = F * d * cos(A)
Where F = force applied
d = distance moved
A = angle of ramp
Therefore, work done is:
W = 20 * 0.5 * cos30
W = 8.66 J
(b) Work done is equal to change in Kinetic energy. Since the initial kinetic energy is zero:
W = KE(final)
W = ½ * m * v²
Where v = final velocity
=> 8.66 = ½ * 3 * v²
v² = 5.773
v² = 2.40 m/s
Answer: <u><em>C. Steel</em></u>
Explanation: <em><u>When a sound wave travels through a solid body consisting</u></em>
<em><u /></em>
<em><u>of an elastic material, the velocity of the wave is relatively</u></em>
<em><u /></em>
<em><u>high. For instance, the velocity of a sound wave traveling</u></em>
<em><u /></em>
<em><u>through steel (which is almost perfectly elastic) is about</u></em>
<em><u /></em>
<em><u>5,060 meters per second. On the other hand, the velocity</u></em>
<em><u /></em>
<em><u>of a sound wave traveling through an inelastic solid is</u></em>
<em><u /></em>
<em><u>relatively low. So, for example, the velocity of a sound wave</u></em>
<em><u /></em>
<em><u>traveling through lead (which is inelastic) is approximately</u></em>
<em><u /></em>
<em><u>1,402 meters per second.</u></em>
<em><u /></em>
<u><em /></u>
Answer:
0.37 kg
Explanation:
I'm not a professor myself, but this is how I worked it out:
using the graph, after 100 seconds, the temperature is 100 degrees Celsius.
If we now substitute everything into the specific heat capacity equation, making the mass "m", we would come up with:
4200 = 155000/(m x 100)
If we rearrange and solve for m, we get 0.37 kg.
I'm not sure if I have done this correctly, feel free to correct me.
Hope this helps!