Answer:
Vertical height of the hill, h = 20.4 meters
Explanation:
Given that,
Speed of the bicyclist, v = 20 m/s
To find,
The vertical height of the hill.
Solution,
Let h is the height of the hill. When he approaches the bottom of the hill, the loss in kinetic energy is equal to the gain in potential energy. Using the conservation of energy as,



h = 20.4 meters
Therefore, the vertical height of the hill is 20.4 meters. Hence, this is the required solution.
Answer:
<h2>T(Period) = 1.33s</h2><h2>f(Frequency) = 0.75Hz (cycles/second)</h2>
Explanation:
<h2>Given:</h2><h2 /><h2>λ = 4.0m</h2><h2>Amplitude = 25m</h2><h2>d = 24m</h2><h2>s = 8.0s</h2><h2 /><h2>Required:</h2><h2>f = ?</h2><h2>T = ?</h2><h2 /><h2>Analysis:</h2><h2>v = λf</h2><h2>f =N/t</h2><h2>T = 1/f</h2><h2 /><h2>v = d/t</h2><h2 /><h2>Solve:</h2><h2>v = d/t = 24/8.0 → v = 3.0m/s</h2><h2>v =λf → f = v/λ = 3.0/4.0 → f = 0.75Hz</h2><h2>T = 1/f = 1/0.75 → T = 1.33s</h2><h2 /><h2>Hopes this helps. Mark as brainlest plz!</h2>
Answer:
13.18 m/s
Explanation:
Let the velocity of sports utility car is
-u as it is moving in opposite direction.
mc = 1200 kg, uc = 31.1 m/s
ms = 2830 kg, us = - u = ?
Using conservation of momentum
mc × uc + ms × us = 0
1200 × 31.1 - 2830 × u = 0
u = 13.18 m/s
A solar panel are most efficient under natural sunlight, however, a solar panel can work using artificial light simply because a solar panel collects photons which collide with silicon atoms transferring their energy which cause them to lose electrons.