Answer:
because the book's is covered by papers
Answer:

Solution:
As per the question:
Point charge, q = 
Test charge, 
Work done by the electric force, 
Now,
We know that the electric potential at a point is given by:

where
r = separation distance between the charges.
Also,
The work done by the electric force i moving a test charge from point A to B in an electric field:




Answer:
d. This statement is false. She and the Space Station share the same orbit and will stay together unless they are pushed apart.
Explanation:
In astronomy, orbit is simply a path of an object around another object in a space. That is, orbit is a path of a body that revolves around a gravitating center of mass. Examples of an orbit is are satellite around a planet, orbit around a center of galaxy, planet around the sun, and among others.
On the other hand, space station refers to a spacecraft that can support a group of human for long time in the orbit. Another names for space stations are orbital space station and orbital station.
Therefore, an astronaut goes on a space walk outside the Space Station shares the same orbit with the space station and they will stay together unless they are pushed apart.
Answer:
As given in the problem statement
frequency=1 KHz=1*10^3 Hz
V(t) is represented as
v(t) = 5sin(2 \pi 1000t) + 0.05sin(2 \pi 3000t)
v ( t ) = 5 s i n ( 2 π 1000 t ) + 0.05 s i n ( 2 π 3000 t )
Total harmonic distortion will be 234 Pi
Answer:
gravitational field strength (g) is measured in newtons per kilogram (N/kg)