Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
So,
a) 0 < r < r1 :
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
Hence, E = 0 for r < r1
b) r1 < r < r2:
Electric field =?
Let, us consider the Gaussian Surface,
E x 4
= 
So,
Rearranging the above equation to get Electric field, we will get:
E = 
Multiply and divide by
E =
x 
Rearranging the above equation, we will get Electric Field for r1 < r < r2:
E= (σ1 x
) /(
x
)
c) r > r2 :
Electric Field = ?
E x 4
= 
Rearranging the above equation for E:
E = 
E =
+ 
As we know from above, that:
= (σ1 x
) /(
x
)
Then, Similarly,
= (σ2 x
) /(
x
)
So,
E =
+ 
Replacing the above equations to get E:
E = (σ1 x
) /(
x
) + (σ2 x
) /(
x
)
Now, for
d) Under what conditions, E = 0, for r > r2?
For r > r2, E =0 if
σ1 x
= - σ2 x 
A spinning force acting upon it
Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 
The correct answer is A. Acid rain forms from human activities and lowers the pH of rainwater below 7
Explanation:
The term "acid rain" is used to refer to rainwater with a low pH or a high acidity, this includes rainwater with a pH below 7 (solutions with a pH under 7 are acidic). In terms of formation, acid rain is mainly the result of human activities such as factories or cars that release pollutants into the atmosphere including nitric and sulfuric acids and these alter the natural pH of rain and makes it more acidic. Additionally, acid rain has negative consequences such as the death of fishes and other organisms in lakes, rivers, etc. because the acidity is toxic to many organisms. Thus, acid rain is the result of human activities and it lowers the pH of rain (Option A).
Kg . Meter per second (Kg.m/s)