Answer:
Objective Function: P = 2x + 3y + z
Subject to Constraints:
3x + 2y ≤ 5
2x + y – z ≤ 13
z ≤ 4
x,y,z≥0
Step-by-step explanation:
Answer: The second graph
In all but the 3 graphs, the data is perfectly symmetrical. This means that the mean and the median would be the same.
However, in the second graph the data is skewed to the right. This means that the mean would also be skewed to the right due to the larger scores there. Using the median in this case would give a clearer picture of the data.


- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>

- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>


According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>





<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse

Answer:
y = 2/3x + 4
Step-by-step explanation:
y = mx + b
m= 4/6 (y intercept over x intercept)
simplify
m= 2/3
b= 4 (y intercept)