Here's a pattern to consider:
1+100=101
2+99=101
3+98=101
4+97=101
5+96=101
.....
This question relates to the discovery of Gauss, a mathematician. He found out that if you split 100 from 1-50 and 51-100, you could add them from each end to get a sum of 101. As there are 50 sets of addition, then the total is 50×101=5050
So, the sum of the first 100 positive integers is 5050.
Quick note
We can use a formula to find out the sum of an arithmetic series:

Where s is the sum of the series and n is the number of terms in the series. It works for the above problem.
How much are the soccer cleats
Answer:
yup you are correct. The answer is 144 :)
Step-by-step explanation:
Also thx for the points!
Answer:
12617.13
Step-by-step explanation:
250(1+0.103)^40= 12617.13
hope it help
Answer:
x = 1
, y = 3 thus: A is your Anser
Step-by-step explanation:
Solve the following system:
{2 x + y = 5 | (equation 1)
x + y = 4 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{2 x + y = 5 | (equation 1)
0 x+y/2 = 3/2 | (equation 2)
Multiply equation 2 by 2:
{2 x + y = 5 | (equation 1)
0 x+y = 3 | (equation 2)
Subtract equation 2 from equation 1:
{2 x+0 y = 2 | (equation 1)
0 x+y = 3 | (equation 2)
Divide equation 1 by 2:
{x+0 y = 1 | (equation 1)
0 x+y = 3 | (equation 2)
Collect results:
Answer: {x = 1
, y = 3