The diameter is 16m Because the diameter is twice the radius
A) The strata to be used in this survey by the employer is; <em><u>Type of Staff</u></em>
B) <em>Stratified Random Sampling</em> will be preferred because the opinions of <em><u>the staffs on the tipping policy</u></em> may be the same within each type but differ across the different <u><em>types of staffs.</em></u>
- A stratified random sampling is a type of sampling that divides a population into groups known as strata.
Now, from the question, we see that after adding a 20% to the cost of food and beverages, that the additional revenue will be distributed equally among the kitchen and server staffs.
This means the strata here will be the type of staff because the opinions of the staffs on the tipping policy may be the within each type but differ across both types of staffs.
Read more at; brainly.com/question/1954758
The expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Given an integral
.
We are required to express the integral as a limit of Riemann sums.
An integral basically assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinite data.
A Riemann sum is basically a certain kind of approximation of an integral by a finite sum.
Using Riemann sums, we have :
=
∑f(a+iΔx)Δx ,here Δx=(b-a)/n
=f(x)=
⇒Δx=(5-1)/n=4/n
f(a+iΔx)=f(1+4i/n)
f(1+4i/n)=![[n^{2}(n+4i)]/2n^{3}+(n+4i)^{3}](https://tex.z-dn.net/?f=%5Bn%5E%7B2%7D%28n%2B4i%29%5D%2F2n%5E%7B3%7D%2B%28n%2B4i%29%5E%7B3%7D)
∑f(a+iΔx)Δx=
∑
=4
∑
Hence the expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Learn more about integral at brainly.com/question/27419605
#SPJ4
Answer: M∠2 just mean measure of angle 2,
Step-by-step explanation: So I worked it out and the awnser is B.
3 numbers/the degrees of all 3 sides always add up to 180 degrees.
Side 1 is 60 degrees and the left side is 20, so 20 + 60 + 3 (unkown number) = 180
60 - 20 = 100,