Hi friend,
This is a perfect square trinomial.
It can be recognised because it is of the form:
a^2−2ab+b^2=(a−b)^2
with a=3x and b=4
9x2−24x+16=(3x)2−(2⋅(3x)⋅4)+42
=(3x−4)2
Answer:
∠ HGL = 73°
Step-by-step explanation:
KL is a midsegment of the triangle and is parallel to HG, then
∠ KLJ = ∠ HGL ( corresponding angles ), so
9x - 62 = 5x - 2 ( subtract 5x from both sides )
4x - 62 = - 2 ( add 62 to both sides )
4x = 60 ( divide both sides by 4 )
x = 15
Thus
∠ HGL = 5x - 2 = 5(15) - 2 = 75 - 2 = 73°
Answer:
6.00
6.75
Step-by-step explanation:
Answer:
The expressions here are;
6 + 5w
3-16v
4v+ 1
7-v
Step-by-step explanation:
Here, out of the given set, we want to choose all options that are expression.
To do this, we should understand that expressions do not have the equality sign like equations
So expressions are those in the set in which we do not have an equality sign
The right answer is thus;
6 + 5w
3-16v
4v + 1
7-v
Answer:
1) 
2) ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)
Step-by-step explanation:
1) 
We know that 
So, 
2) ![\sqrt[3]{y^5}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D)
We know that ![\sqrt[3]{x}=x^{\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D)
So, ![\sqrt[3]{y^5}=y^{\frac{5}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E5%7D%3Dy%5E%7B%5Cfrac%7B5%7D%7B3%7D)
3) ![\sqrt[5]{a^{12}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D)
We know that ![\sqrt[5]{x}=x^{\frac{1}{5}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B5%7D)
So, ![\sqrt[5]{a^{12}}=a^{\frac{12}{5} }](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Ba%5E%7B12%7D%7D%3Da%5E%7B%5Cfrac%7B12%7D%7B5%7D%20%7D)
4) ![\sqrt[4]{z^{9}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D)
We know that ![\sqrt[4]{x}=x^{\frac{1}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D)
So, ![\sqrt[4]{z^{9}}=z^\frac{9}{4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bz%5E%7B9%7D%7D%3Dz%5E%5Cfrac%7B9%7D%7B4%7D)