1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
14

of a parabolic arch and is to have a span of 100 feet. The height of the arch a distance of 40 feet from the center is to be 10

feet. Find the height of the arch at its center.
Mathematics
1 answer:
JulsSmile [24]3 years ago
4 0

Answer:

y = -0.11x^2 + 1.111x

y = 28 ft  .... Height at center

Step-by-step explanation:

Given:-

- The span of the arc is = 100 ft

- The height of the arch is 40 ft at 10 ft from center.

Find:-

- The equation of parabolic arch and the height of the arch at center.

Solution:-

- We will take the height y as a function of width x of the parabolic arch. The general equation of the arch is such that it passes through origin. The equation is given in the form as:

                               y = f(x) = ax^2 + bx

Where,

           a, b, and c are constants to be determined.

- We will use the condition i.e the span of entire arch is 100 ft. So we could say that y = 0 for x = 100 ft. Then we have:

                               0 = f(100) = a(100)^2 + b(100)   ..... 1

- Using second condition i.e y = 10 ft at 40 ft from center. Since, due to symmetry we know that center lies at x = 50 ft. Then y = 10 ft at x = 10 ft. The condition can be expressed in the form:

                               10 = f(10) = a(10)^2 + b(10)  ..... 2

- Solving the 2 Equations simultaneously, we have:

                               0 = a(100)^2 + b(100)

                               10*10 = a*10*(10)^2 + b(10)*10

                               100 = a(10)^3 + b(100)

- Subtract both equations:

                               100 = a*(10^3 - 100^2)

                               a = 100 / ( 1000 - 10000)

                               a = -0.11

- Then using a = -0.11 evaluate b:

                               -1.11 + 10b = 10

                                b = 11.11 / 10 = 1.111

- The equation of the parabola is:

                                y = -0.11x^2 + 1.111x                                

-The height of the arch at center where x = 50 ft.

                                y = -0.11(50)^2 + 1.111(50)

                                y = -27.5 + 55.5

                                y = 28 ft                                                        

- The height of the parabolic arch at center is given as y = 28 ft.

You might be interested in
What is the volume of a sphere with a diameter of 18 cm? Round your answer to the nearest hundredth.
andrezito [222]

3053.6 because from the formula 4/3piercube

4 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%20%20%5Csf%20%5Chuge%7B%20question%20%5Chookleftarrow%7D" id="TexFormula1" title=" \sf \huge
BabaBlast [244]

\underline{\bf{Given \:equation:-}}

\\ \sf{:}\dashrightarrow ax^2+by+c=0

\sf Let\:roots\;of\:the\: equation\:be\:\alpha\:and\beta.

\sf We\:know,

\boxed{\sf sum\:of\:roots=\alpha+\beta=\dfrac{-b}{a}}

\boxed{\sf Product\:of\:roots=\alpha\beta=\dfrac{c}{a}}

\underline{\large{\bf Identities\:used:-}}

\boxed{\sf (a+b)^2=a^2+2ab+b^2}

\boxed{\sf (√a)^2=a}

\boxed{\sf \sqrt{a}\sqrt{b}=\sqrt{ab}}

\boxed{\sf \sqrt{\sqrt{a}}=a}

\underline{\bf Final\: Solution:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}

\bull\sf Apply\: Squares

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2= (\sqrt{\alpha})^2+2\sqrt{\alpha}\sqrt{\beta}+(\sqrt{\beta})^2

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2 \alpha+\beta+2\sqrt{\alpha\beta}

\bull\sf Put\:values

\\ \sf{:}\dashrightarrow (\sqrt{\alpha}+\sqrt{\beta})^2=\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\sqrt{\dfrac{-b}{a}+2\sqrt{\dfrac{c}{a}}}

\bull\sf Simplify

\\ \sf{:}\dashrightarrow \underline{\boxed{\bf {\sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\sqrt{\dfrac{-b}{a}}+\sqrt{2}\dfrac{c}{a}}}}

\underline{\bf More\: simplification:-}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{-b}}{\sqrt{a}}+\dfrac{c\sqrt{2}}{a}

\\ \sf{:}\dashrightarrow \sqrt{\alpha}+\sqrt{\beta}=\dfrac{\sqrt{a}\sqrt{-b}+c\sqrt{2}}{a}

\underline{\Large{\bf Simplified\: Answer:-}}

\\ \sf{:}\dashrightarrow\underline{\boxed{\bf{ \sqrt{\boldsymbol{\alpha}}+\sqrt{\boldsymbol{\beta}}=\dfrac{\sqrt{-ab}+c\sqrt{2}}{a}}}}

5 0
2 years ago
Read 2 more answers
25 7/5 tons = ib ......
Fittoniya [83]

Answer:

c. 51,400

Step-by-step explanation:

25 x 2,000=50,000

2,000 x .7= 1,400

50,000+1,400=51,400

5 0
3 years ago
How many atoms of element X with one valence electron will combine with one oxygen atom?
vlabodo [156]

Answer:

A)

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
GIVING AWAY A LOT POINTS! PLEASE ANSWER!
masya89 [10]

The slope of the line is “rise over run.” That’s the vertical change between the two points (the difference in the y-coordinates) divided by the horizontal change over the same segment (the difference in the x-coordinates).
6 0
3 years ago
Other questions:
  • Which property is used in the problem below?<br><br> 2 (x + 4) = 2 x + 8
    8·2 answers
  • My father is 40, and my grandfather is 70. I am 2 years older than twice the gcf of my father's and my grandfather's ages. how o
    11·2 answers
  • If you dig a 6 foot hole how deep is that hole???
    12·2 answers
  • Is 0.0009999 closer to 0 or 1
    12·2 answers
  • 1.) what do values a h and k tell about the graph
    5·2 answers
  • How many numbers between 1 and 100 (inclusive ) are divisible by 5 or 3?
    9·2 answers
  • Please help I will mark brainiest.
    5·1 answer
  • Identify two negative addends that make -10.5
    11·1 answer
  • The volume of a conical pile of sand is increasing at a rate of 300πcm3/sec
    15·1 answer
  • Round 45.395 to the nearest hundredth
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!