-2x = -1
x = 1/2
Any equation that returns x=1/2 is a solution to this problem. For example, x= (3•4)/6 can be simplified so that x=1/2
Answer:
26
is the answer to the question
Answer:
Angle of A = 90 degree-62 degree = 28 degree.
Step-by-step explanation:
tan (62) = opposite / adjacent = 10 / a ---> a = 10/tan (62) = 10/ 1.88 = 5.319
cos (62) = a/c --->c = a/cos (62) = 5.319 / 0.47 = 5.3 / 0.47 = 11.3
or another way.
sin (62) = 10 /c ---> c = 10/ sin (62) = 10 / 0.88 = 11.3
So Angle of A = 28 degree.
a = 5. 3
c = 11.3.
please give me brainliest. I hope it help.
Answer:
-30
Step-by-step explanation:
f(x) = 3 so f(-8) = 3;
g(x) = 5x + 7, so g(-8) = 5(-8) + 7 = -33
Then (f + g)(-8) = 3 - 33 = -30
This is the sum of two functions both evaluated at x = -8.
Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x