1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
6

How many twenty-fourths would five sixths equal

Mathematics
2 answers:
olganol [36]3 years ago
5 0
I would give the fractions an equivalent denominator by multiplying 5/6 by 4:
(5/6)*4= 20/24

So 5/6 is equal to 20/24.
qwelly [4]3 years ago
4 0
n\cdot \frac { 1 }{ 24 } =\frac { 5 }{ 6 } \\ \\ 24\cdot n\cdot \frac { 1 }{ 24 } =\frac { 5 }{ 6 } \cdot 24

\\ \\ n=\frac { 5 }{ 6 } \left( 20+4 \right) \\ \\ n=\frac { 100 }{ 6 } +\frac { 20 }{ 6 } \\ \\ n=\frac { 120 }{ 6 } \\ \\ n=20

The answer you are looking for is 20.
You might be interested in
I’m stuck on this question can anyone help me?
ch4aika [34]

Answer: REE thats high school work

Step-by-step explanation:

7 0
3 years ago
How to solve 5(x+2)(x-2)
nevsk [136]
The answer is: 5x^2-20
7 0
3 years ago
Factor the following polynomial 9x2 + 21x – 18
solong [7]

Answer:

factors are

21 and x

Step-by-step explanation:

equation 9 × 2 + 21x - 18

terms 9 , 2, 21x, -18

factors 21x = 21 and x

4 0
3 years ago
Read 2 more answers
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
What is 925 divided by 264
Leni [432]

Answer:

3.50378787879

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Todd had 6 gallons of gasoline in his motorbike. After driving 150​ miles, he had 3 gallons left. Compute the​ slope, or rate of
    9·2 answers
  • Hey can I have help?
    5·2 answers
  • Is my answer correct and how do you know? I just graphed it , is there another way I could do it?
    9·2 answers
  • The table represents a function.
    13·2 answers
  • Write the following expression in words 8+1/2*(9-3)
    15·1 answer
  • ASAP
    6·1 answer
  • Which sequence could be partially defined by the recursive f (n + 1) = f(n) + 2.5 for n &gt; 1?
    8·1 answer
  • I NEED HELP PLEASE HELP ME
    7·2 answers
  • How could you find 40% of 700 mentally? Select all that apply.
    6·1 answer
  • Meredith is playing games at an arcade to earn tickets that she can exchange for a prize. She has 250 tickets from a previous vi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!