In order to answer the above question, you should know the general rule to solve these questions.
The general rule states that there are 2ⁿ subsets of a set with n number of elements and we can use the logarithmic function to get the required number of bits.
That is: 
log₂(2ⁿ) = n number of <span>bits
</span>
a). <span>What is the minimum number of bits required to store each binary string of length 50?
</span>
Answer: In this situation, we have n = 50. Therefore,  2⁵⁰ binary strings of length 50 are there and so it would require:
                                                     log₂(2⁵⁰) <span>= 50 bits.
b). </span><span>what is the minimum number of bits required to store each number with 9 base of ten digits?
</span>
Answer: In this situation, we have n = 50. Therefore, 10⁹ numbers with 9 base ten digits are there and so it would require:
                                                     log2(109)= 29.89 
<span>                                                                     = 30 bits. (rounded to the nearest                                                                                                                        whole #)
c).  </span><span>what is the minimum number of bits required to store each length 10 fixed-density binary string with 4 ones?
</span>
Answer: There is (10,4) length 10 fixed density binary strings with 4 ones and 
so it would require:
                                                     log₂(10,4)=log₂(210) = 7.7
                                                                    = 8 bits. (rounded to the nearest                                                                                                                        whole #)
        
             
        
        
        
It is 30-88 degrees I think
        
                    
             
        
        
        
Answer:
An estimate
Step-by-step explanation:
 
        
             
        
        
        
Answer:
g ≥ -4
Step-by-step explanation:
3 ≤ 7 + g
3 - 7 ≤ 7 - 7 + g
-4 ≤ g
g ≥ -4
 
        
             
        
        
        
A reflection across the x-axis. Hope this helps!