Answer:
The answer is B (1 , 3) , (2 , 6) , (4 , 12) , (5 , 15)
Step-by-step explanation:
∵ X : 1 , 2 , 4 , 5
∵ Y : 3 , 6 , 12 , 15
∵ 2/6 = 1/3
∵ 4/12 = 1/3
∵ 5/15 = 1/3
∴ 1/3 = 2/6= 4/12 = 5/15 = 1/3 ⇒ all are proportion
∴ Answer B is in proportional relationship
Answer:
whut
Step-by-step explanation:
9514 1404 393
Answer:
A. f^-1(x) = x³ -12
Step-by-step explanation:
The inverse function can be found by solving ...
x = f(y)
x = ∛(y +12) . . . . . use the definition of f(x)
x³ = y +12 . . . . . . . cube both sides to eliminate the radical
x³ -12 = y . . . . . . . add -12 to isolate the y-variable
f^-1(x) = x³ -12 . . . matches choice A
Answer:
Container
will have less label area than container
by about
.
Step-by-step explanation:
A rectangular sheet of paper can be rolled into a cylinder. Conversely, the lateral surface of a cylinder can be unrolled into a rectangle- without changing the area of that surface.
Indeed, the width of that rectangle will be the same as the height of the cylinder. On the other hand, the length of that rectangle should be exactly equal to the circumference of the circles on the top and the bottom of the cylinder. In other words, if a cylinder has a height of
and a radius of
at the top and the bottom, then its lateral surface can be unrolled into a rectangle of width
and length
.
Apply this reasoning to both cylinder
and
:
For cylinder
,
while
. Therefore, when the lateral side of this cylinder is unrolled:
- The width of the rectangle will be
, while - The length of the rectangle will be
.
That corresponds to a lateral surface area of
.
For cylinder
,
while
. Similarly, when the lateral side of this cylinder is unrolled:
- The width of the rectangle will be
, while - The length of the rectangle will be
.
That corresponds to a lateral surface area of
.
Therefore, the lateral surface area of cylinder
is smaller than that of cylinder
by
.
<span><span> y2(q-4)-c(q-4)</span> </span>Final result :<span> (q - 4) • (y2 - c)
</span>
Step by step solution :<span>Step 1 :</span><span>Equation at the end of step 1 :</span><span><span> ((y2) • (q - 4)) - c • (q - 4)
</span><span> Step 2 :</span></span><span>Equation at the end of step 2 :</span><span> y2 • (q - 4) - c • (q - 4)
</span><span>Step 3 :</span>Pulling out like terms :
<span> 3.1 </span> Pull out q-4
After pulling out, we are left with :
(q-4) • (<span> y2</span> * 1 +( c * (-1) ))
Trying to factor as a Difference of Squares :
<span> 3.2 </span> Factoring: <span> y2-c</span>
Theory : A difference of two perfect squares, <span> A2 - B2 </span>can be factored into <span> (A+B) • (A-B)
</span>Proof :<span> (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 <span>- AB + AB </span>- B2 =
<span> A2 - B2</span>
</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication.
Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.
Check : <span> y2 </span>is the square of <span> y1 </span>
Check :<span> <span> c1 </span> is not a square !!
</span>Ruling : Binomial can not be factored as the difference of two perfect squares
Final result :<span> (q - 4) • (y2 - c)
</span><span>
</span>