The correct answer is C) 20 cents.
I got that answer by: 1.60/8=0.20
Hope this helps! =)
Answer: 0.0035
Step-by-step explanation:
Given : The readings on thermometers are normally distributed with a mean of 0 degrees C and a standard deviation of 1.00 degrees C.
i.e.
and
Let x denotes the readings on thermometers.
Then, the probability that a randomly selected thermometer reads greater than 2.17 will be :_
![P(X>2.7)=1-P(\xleq2.7)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{2.7-0}{1})\\\\=1-P(z\leq2.7)\ \ [\because\ z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.9965\ \ [\text{By z-table}]\ \\\\=0.0035](https://tex.z-dn.net/?f=P%28X%3E2.7%29%3D1-P%28%5Cxleq2.7%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B2.7-0%7D%7B1%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq2.7%29%5C%20%5C%20%5B%5Cbecause%5C%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.9965%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%20%5C%5C%5C%5C%3D0.0035)
Hence, the probability that a randomly selected thermometer reads greater than 2.17 = 0.0035
The required region is attached below .
It can travel 125km with 5 liters
And 6 liters to travel 150 :)
9514 1404 393
Answer:
29
Step-by-step explanation:
The third in sequence will be the middle one, the average value of all the numbers in the sequence. That average is the sum (145) divided by the number of numbers (5).
third number = 145/5 = 29
You want to find values of v (number of visors sold) and c (number of caps sold) that satisfy the equation
... 3v + 7c = 4480
In intercept form, this equation is
... v/(1493 1/3) + c/640 = 1 . . . . . divide by 4480
Among other things, this tells us one solution is
... (v, c) = (0, 640)
The least common multiple of 3 and 7 is 21, so decreasing the number of caps sold by some multiple of 3 and increasing the number of visors sold by that same multiple of 7 will result in another possible solution.
The largest multiple of 21 that is less than 4480 is 213. Another possible solution is (0 +213·7, 640 -213·3) = (1491, 1)
We can also pick some number in between, say using 100 as the multiple
... (0 +100·7, 640 -100·3) = (700, 340)
In summary, your three solutions could be
... (visors, caps) = (0, 640), (700, 340), (1491, 1)