Answer:1.69*10^12 J
Step-by-step explanation:
From figure above, using triangle ratio
485/755.5=y/l. Cross multiplying 485l=755.5y Divide via 485) hence l= 755.5y/485
Consider a slice volume Vslice= (755.5y/485)^2∆y; recall density =150lb/ft^3
Force slice = 150*755.5^2.y^2.∆y/485^2
From figure 2 in the attachment work done for elementary sclice
Wslice= 150.755.5^2.y^2.∆y.(485-y)/485^2
= (150*755.5^2*y^2)(485-y)∆y/485
To calculate the total work we integrate from y=0 to y= 485
Ie W=[ integral of 150*755.5^2 *y^2(485-y)dy/485] at y=0 and y= 485
Integrating the above
W= 150*755.5^2/485[485*y^3/3-y^4/4] at y= 0 and y=485
W= 150*755.5^2/485(485*485^3/3-484^4/4)-(485.0^3/3-0^4/4)
Work done 1.69*10^12joules
Answer:
I need info
Step-by-step explanation:
1.
a.) 2q + 5r
2(7) + 5(-2)
14 - 10 = 4
b.) 3(p + 6) + q + r Plug in the numbers
3(5 + 6) + 7 - 2 Solve inside the parentheses first
3(11) + 7 - 2
33 + 5 = 38
2.
a.) m(3m + 4n)
2(3(2) + 4(3))
2(6 + 12)
2(18) = 36
b.) n²(m + p²)
(3)²(2 + (-5)²)
9(2 + 25)
9(27) = 243
c.) 3m(8 + n) + n²
3(2) (8 + 3) + 3²
6(11) + 9
66 + 9 = 75
Answer:
Option (2). 1
Step-by-step explanation:
Coordinates of point A, B, C and D are,
A(-4, 4), B(-2, 4), C(-2, 1) and D(-4, 3).
Quadrilateral ABCD when rotated 90° clockwise about the origin,
Rule for the rotation of the vertices,
(x, y) → (y, -x)
Following the rule of rotation coordinates of the image points,
A(-4, 4) → A'(4, 4)
B(-2, 4) → B'(4, 2)
C(-2, 1) → C'(1, 2)
D(-4, 3) → D'(3, 4)
Since all image points have the positive coordinates (x and y coordinates), image quadrilateral A'B'C'D' will be located in 1st quadrant.
Option (2) is the correct option.
Number 10.
>
Number 12.
=
Number 14.